51.9k views
19 votes
Integration by parts:


\int\limits^1_ {(1)/(√(3) ) } \, arctan((1)/(x))dx

User Nivhanin
by
4.0k points

1 Answer

5 votes

The arctan function has the following property: if x is positive, then

arctan(1/x) + arctan(x) = π/2

This means


\displaystyle \int_(1/\sqrt3)^1 \arctan\left(\frac1x\right) \, dx = \int_(1/\sqrt3)^1 \left(\frac\pi2 - \arctan(x)\right) \, dx \\\\\\ = \frac{(3-\sqrt3)\pi}6 - \int_(1/\sqrt3)^1 \arctan(x) \, dx

For the remaining integral, integrate by parts with


u = \arctan(x) \implies du = (dx)/(x^2+1)


dv = dx \implies v = x


\displaystyle \int_a^b \arctan(x) \, dx = uv\bigg|_a^b - \int_a^b v \, du


\implies \displaystyle \int_(1/\sqrt3)^1 \arctan(x) \, dx = x\arctan(x) \bigg|_(1/\sqrt3)^1 - \int_(1/\sqrt3)^1 (x)/(x^2+1) \, dx

We have arctan(1) = π/4 and arctan(1/√3) = π/6, and


\displaystyle \int (x)/(x^2+1) \, dx = \frac12 \int (d(x^2+1))/(x^2+1) = \frac12\ln(x^2+1) + C

which gives


\displaystyle \int_(1/\sqrt3)^1 \arctan(x) \, dx = \frac\pi4 - \frac\pi{6\sqrt3} - \frac{\ln(2) - \ln\left(\frac43\right)}2 \\\\\\ = ((9-2\sqrt3)\pi)/(36) + \frac12\ln\left(\frac23\right)

so that


\displaystyle \int_(1/\sqrt3)^1 \arctan\left(\frac1x\right) \, dx = \frac{(3-\sqrt3)\pi}6 - ((9-2\sqrt3)\pi)/(36) - \frac12\ln\left(\frac23\right) \\\\\\ = \boxed{((9-4\sqrt3)\pi)/(36) - \frac12\ln\left(\frac23\right)}

Alternatively, you can integrate by parts immediately:


u = \arctan\left(\frac1x\right) \implies du = \frac{-\frac1{x^2}}{1+\frac1{x^2}} \, dx = -(dx)/(x^2+1)


dv = dx \implies v = x

so that


\displaystyle \int_(1/\sqrt3)^1 \arctan\left(\frac1x\right) \, dx = x\arctan\left(\frac1x\right) \bigg|_(1/\sqrt3)^1 + \int_(1/\sqrt3)^1 (x)/(x^2+1) \, dx

You'll end up with the same result either way.

User Lorenzo Polidori
by
4.0k points