204k views
1 vote
If
f(x)=3^x, prove that
f(x) + f(x+1)=4f(x)

User Albertus
by
3.8k points

1 Answer

5 votes


$f(x)+f(x+1) \stackrel{1}{=} 3^x+3^(x+1) \stackrel{2}{=} 3^x+3^x\cdot3^1\stackrel{3}{=}3^x+3\cdot3^x\stackrel{4}{=}4\cdot3^x\stackrel{5}{=}4\cdot f(x)

1) Substitution from definition.

2) We use
$x^(a+b)=x^a\cdot x^b

3) We are changing the order of 3 and
3^x.

4) We add 1 and 3
3^x and we get
4\cdot 3^x

5) Substitution from definition (but the other way than at the beginning).

User Eli Nathan
by
3.8k points