35.3k views
5 votes
The angle,2Θ, lies in the third quadrant such that cos2Θ=-2/5. Determine an exact value for tanΘ . Show your work including any diagrams if you plan to use them. (3 marks)

User Harshdeep
by
3.9k points

1 Answer

5 votes

Answer:


tan(\theta)=(√(21))/(3)

Explanation:

1. Approach

One is given the following information:


cos(2\theta)=-(2)/(5)

One can rewrite this as:


cos(2\theta)=-0.4

Also note, the problem says that the angle (
2\theta) is found in the third quadrant.

Using the trigonometric identities (
cos(2\theta)=2(cos^2(\theta))-1) and (
cos(2\theta)=1-2(sin^2(\theta))) one can solve for the values of (
cos(\theta)) and (
sin(\theta)). After doing so one can use another trigonometric identity (
tan(\theta)=(sin(\theta))/(cos(\theta))). Substitute the given information into the ratio and simplify.

2. Solve for
(cos(\theta))

Use the following identity to solve for (
cos(\theta)) when given the value (
cos(2\theta)).


cos(2\theta)=2(cos^2(\theta))-1

Substitute the given information in and solve for (
cos(\theta)).


cos(2\theta)=2(cos^2(\theta))-1


-0.4=2(cos^2(\theta))-1

Inverse operations,


-0.4=2(cos^2(\theta))-1


0.6=2(cos^2(\theta))


0.3=cos^2(\theta)


√(0.3)=cos(\theta)

Since this angle is found in the third quadrant its value is actually:


cos(\theta)=-√(0.3)

3. Solve for
(sin(\theta))

Use the other identity to solve for the value of (
sin(\theta)) when given the value of (
cos(2\theta)).


cos(2\theta)=1-2(sin^2(\theta))

Substitute the given information in and solve for (
sin(\theta)).


cos(2\theta)=1-2(sin^2(\theta))


-0.4=1-2(sin^2(\theta))

Inverse operations,


-0.4=1-2(sin^2(\theta))


-1.4=-2(sin^2(\theta))


0.7=sin^2(\theta)


√(0.7)=sin(\theta)

Since this angle is found in the third quadrant, its value is actually:


sin(\theta)=-√(0.7)

4. Solve for
(tan(\theta))

One can use the following identity to solve for
(tan(\theta));


tan(\theta)=(sin(\theta))/(cos(\theta))

Substitute the values on just solved for and simplify,


tan(\theta)=(sin(\theta))/(cos(\theta))


tan(\theta)=(-√(0.7))/(-√(0.3))


tan(\theta)=(√(0.7))/(√(0.3))


tan(\theta)=\frac{\sqrt{(7)/(10)}}{\sqrt{(3)/(10)}}

Rationalize the denominator,


tan(\theta)=\frac{\sqrt{(7)/(10)}}{\sqrt{(3)/(10)}}


tan(\theta)=\frac{\sqrt{(7)/(10)}}{\sqrt{(3)/(10)}}*\frac{\sqrt{(3)/(`0)}}{\sqrt{(3)/(10)}}


tan(\theta)=\frac{\sqrt{(7)/(10)*(3)/(10)}}{\sqrt{(3)/(10)*(3)/(10)}}


tan(\theta)=\frac{\sqrt{(21)/(100)}}{(3)/(10)}


tan(\theta)=((√(21))/(10))/((3)/(10))


tan(\theta)=(√(21))/(10)*(10)/(3)


tan(\theta)=(√(21))/(3)

User Rajshri Mohan K S
by
4.6k points