26.2k views
3 votes

(x+3).(x+2)=√(x^2+4)

User Matuszew
by
4.9k points

1 Answer

5 votes

Answer:

OK, so I thought I could solve this but now I'm not so sure. I got
\sqrt{x^(2)+4} =
\sqrt{x^(2)+4} but this whole thing is such a huge mess I have no idea if it's right or wrong. I tried my best to get it right and I hope this helps.

Explanation:

First, let's simplify the left side:

let's make (x + 3) = a and (x + 2) = b

so a · b or ab =

Now let's solve for a:

ab =
\sqrt{x^(2)+4}

ab/b = (
\sqrt{x^(2)+4}) / b

a = (
\sqrt{x^(2)+4}) / b

Now we can substitute a:

[(
\sqrt{x^(2)+4}) / b] · b =
\sqrt{x^(2)+4}

{[(
\sqrt{x^(2)+4}) / b] · b} / [(
\sqrt{x^(2)+4}) / b] = (
\sqrt{x^(2)+4}) / [(
\sqrt{x^(2)+4}) / b}

b = (
\sqrt{x^(2)+4}) / [(
\sqrt{x^(2)+4}) / b]

Now we can substitute a and b:

[(
\sqrt{x^(2)+4}) / b] · (
\sqrt{x^(2)+4}) / [(
\sqrt{x^(2)+4}) / b] =
\sqrt{x^(2)+4}


\sqrt{x^(2)+4} =
\sqrt{x^(2)+4}

User DeeBo
by
4.9k points