128k views
0 votes
The points (a,b) and (c,d) form a segment, and the points (d,e) and (d,f) form a segment. Create an equation assuming the segments are congruent

1 Answer

6 votes

If the segments are congurent they are of equal length.

So constructing an equation will not be hard.

Take for example
y=x and limit x to be between and including 0 and 1 for the first segment. In this case our segment is
(a,b)\to(c,d)=(0,0)\to(1,1).

Now, d has been fixated to the value of 1 and we need to construct a segment from
(1,e)\to(1,f).

Since both x coordinates of the endpoints of the segment are fixed to be 1, we cannot run anymore, that is, we fixated our run. But on the rise (y-axis direction) we can still move one unit up.

Let e be 1 and f be 2. The distance between
(1,1) and
(1,2) is 1 which is also the distance between
(0,0) and
(1,1).

Now we are asked to find the equation of both segments.

First segment is described by
y=x with limited domain of
0\leq x\leq1.

Second segment is described by
x=2 with again limited domain of
1\leq y\leq2.

Hope this helps :)

User Mayura
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories