196k views
1 vote
Evaluate the sum of geometric series below:


\displaystyle \large{ \sum_(k = 1)^n (4 \cdot {3}^(k) - {2}^(k + 1)) }
Please also show your work too. Thank you!​

1 Answer

3 votes

Answer:


\displaystyle 6({3}^(n) - 1)- 4( {2}^(n) - 1 )

Explanation:

we would like to evaluate the following sum of geometric series:


\displaystyle \sum_(k = 1)^n (4 \cdot {3}^(k) - {2}^(k + 1))

to do so recall the Substracting property of partial sum Thus,


\displaystyle \sum_(k = 1)^n (4 \cdot {3}^(k) )- \sum_(k = 1)^n({2}^(k + 1))

rewrite $2^{k+1}$ as 2•2^k:


\displaystyle \sum_(k = 1)^n (4 \cdot {3}^(k) )- \sum_(k = 1)^n({2}^(k ) \cdot 2)

utilize constant property of partial sum:


\displaystyle 4\sum_(k = 1)^n ({3}^(k) )- 2\sum_(k = 1)^n({2}^(k ) )

factor out 2:


\displaystyle 2 \left(2\sum_(k = 1)^n ({3}^(k) )- \sum_(k = 1)^n({2}^(k ) ) \right)

calculate the sum:


\displaystyle 2 \left( \frac{ 6({3}^(n) - 1)}{2} - 2( {2}^(n) - 1 ) \right)

distribute:


\displaystyle \boxed{6({3}^(n) - 1)- 4( {2}^(n) - 1 ) }

and we're done:

User AnkDasCo
by
4.0k points