209k views
1 vote
Answers................ ​

Answers................ ​-example-1

2 Answers

3 votes


\\ \rm\Rrightarrow log_2(x^2-x+2)=1+2log_2x


\\ \rm\Rrightarrow log_2(x^2-x+2)=log_22+2log_2x


\\ \rm\Rrightarrow log_2(x^2-x+2)=2log_2(2x)


\\ \rm\Rrightarrow log_2(x^2-x+2)=log_2(2x^2)


\\ \rm\Rrightarrow x^2-x+2=2x^2


\\ \rm\Rrightarrow x^2+x-2=0


\\ \rm\Rrightarrow (x+2)(x-1)=0

  • x=-2,1

log is always positive so x=1

Laws used

  • log_a(a)=1
  • loga^m=mloga
  • log(ab)=loga+logb
User Ol Sen
by
8.6k points
3 votes

Answer:

x=1

Explanation:

log2( x^2 -x+2) = 1+2log2(x)

Rewriting 1 as log2(2)

log2( x^2 -x+2) = log2(2)+2log2(x)

We know that a log b = log a^b

log2( x^2 -x+2) = log2(2)+log2(x^2)

we know log a + log b = log (ab)

log2( x^2 -x+2) = log2(2*x^2)

Since the bases are the same the terms inside must be equal

x^2 -x+2 = 2x^2

Subtract 2x^2 from each side

-x^2 -x+2 = 0

Multiply by -1

x^2 +x-2 = 0

Factor

(x+2)(x-1)=0

Using the zero product property

x+2 = 0 x-1=0

x=-2 x=1

Checking the solutions

log2( x^2 -x+2) = 1+2log2(x)

X cannot be negative because 2 log2(x) cannot be negative

log2( 1^2 -1+2) = 1+2log2(1)

x=1

User Kovalsky Dmitryi
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories