A
(a) You're looking for
![P(X\le 8) = \displaystyle \sum_(x=0)^8 P(X=x)](https://img.qammunity.org/2022/formulas/mathematics/college/z7vfgvkqzyzbu4d6abshpuz8veip873qdq.png)
where
![P(X=x) = \begin{cases}(\lambda^x e^(-\lambda))/(x!)&\text{if }x\in\{0,1,2,\ldots\}\\0&\text{otherwise}\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/86xsnb04v2a1rtvz3thlacw8f7z9tcfxix.png)
Customers arrive at a mean rate of 6 customers per 10 minutes, or equivalently 12 customers per 20 minutes, so
![\lambda = (12\,\rm customers)/(20\,\rm min)*(20\,\mathrm{min}) = 12\,\mathrm{customers}](https://img.qammunity.org/2022/formulas/mathematics/college/l3hbgt1r6owd7u4ko9coozow6aqp8op2ud.png)
Then
![\displaystyle P(X\le 8) = \sum_(x=0)^8 (12^x e^(-12))/(x!) \approx \boxed{0.155}](https://img.qammunity.org/2022/formulas/mathematics/college/r414qx7i8ow0bt9c5x2xozqc8pke6zml07.png)
(b) Now you want
![P(X\ge4) = 1 - P(X<4) = 1 - \displaystyle\sum_(x=0)^3 P(X=x)](https://img.qammunity.org/2022/formulas/mathematics/college/rw4u6ll6o5g2pljv09oew36ucwhklso4w5.png)
This time, we have
![\lambda = (6\,\rm customers)/(10\,\rm min)*(10\,\mathrm{min}) = 6\,\mathrm{customers}](https://img.qammunity.org/2022/formulas/mathematics/college/yl5rhuxrhzayodzzmxyy179ij220sj1lz7.png)
so that
![P(X\ge4) = 1 - \displaystyle \sum_(x=0)^3 (6^x e^(-6))/(x!) \approx \boxed{0.849}](https://img.qammunity.org/2022/formulas/mathematics/college/6itd4xmrvihc00b7d2pbrygvwfb745idl3.png)
B
(a) In other words, you're asked to find the probability that more than 1 customer shows up in the same minute, or
![P(X > 1) = 1 - P(X \le 1) = 1 - P(X=0) - P(X=1)](https://img.qammunity.org/2022/formulas/mathematics/college/2vevfrwnzsi58lo8rjfglxp15vignrsc85.png)
with
![\lambda = (6\,\rm customers)/(6\,\rm min)*(1\,\mathrm{min}) = 1\,\mathrm{customer}](https://img.qammunity.org/2022/formulas/mathematics/college/19msju0tjjmgox6kknncnwxg1bdrazqh28.png)
So we have
![P(X > 1) = 1 - (1^0 e^(-1))/(0!) - (1^1 e^(-1))/(1!) \approx \boxed{0.264}](https://img.qammunity.org/2022/formulas/mathematics/college/avkudllflu7fcugojmm7mwsccouamtdbpg.png)
C
(a) Similar to B, you're looking for
![P(X \le 1) = P(X=0) + P(X=1)](https://img.qammunity.org/2022/formulas/mathematics/college/dmddaoyp9oda93fk36y8d7zl8agnung91a.png)
with
![\lambda = (12\,\rm customers)/(6\,\rm min)*(1\,\mathrm{min}) = 2\,\mathrm{customers}](https://img.qammunity.org/2022/formulas/mathematics/college/bgj59syargvvsd50ujqdieeq828oeb88e9.png)
so that
![P(X\le1) = (2^0e^(-2))/(0!) + (2^1e^(-2))/(1!) \approx \boxed{0.406}](https://img.qammunity.org/2022/formulas/mathematics/college/slsoolkecjchj0646gxvj2hn1dl30xn9us.png)