1.6k views
0 votes
Calculate the ratios in the table using the side lengths that you recorded in Part C.

User Kanobius
by
3.5k points

1 Answer

6 votes

Explanation:

The ratios are;

\dfrac{BC}{AB} = \dfrac{3}{5}

AB

BC

=

5

3

\dfrac{AC}{AB} = \dfrac{4}{5}

AB

AC

=

5

4

\dfrac{BC}{AC} = \dfrac{3}{4}

AC

BC

=

4

3

\dfrac{DE}{AD} = \dfrac{3}{5}

AD

DE

=

5

3

\dfrac{AE}{AD} = \dfrac{4}{5}

AD

AE

=

5

4

\dfrac{DE}{AE} =\dfrac{3}{4}

AE

DE

=

4

3

koGiven that the lengths of the sides are;

\overline {AB}

AB

= 20

\overline {BC}

BC

= 12

\overline {AC}

AC

= 16

\overline {AD}

AD

= 10

\overline {DE}

DE

= 6

\overline {AE}

AE

= 8

The ratios are;

\dfrac{Length \ opposite \ \angle A}{Hypothenus} = \dfrac{BC}{AB} = \dfrac{12}{20} = \dfrac{3}{5}

Hypothenus

Length opposite ∠A

=

AB

BC

=

20

12

=

5

3

\dfrac{Length \ adjacent\ \angle A}{Hypothenus} = \dfrac{AC}{AB} = \dfrac{16}{20} = \dfrac{4}{5}

Hypothenus

Length adjacent ∠A

=

AB

AC

=

20

16

=

5

4

\dfrac{Length \ opposite \ \angle A}{Length \ adjacent \ \angle A} = \dfrac{BC}{AC} = \dfrac{12}{16} = \dfrac{3}{4}

Length adjacent ∠A

Length opposite ∠A

=

AC

BC

=

16

12

=

4

3

\dfrac{Length \ opposite \ \angle A}{Hypothenus} = \dfrac{DE}{AD} = \dfrac{6}{10} = \dfrac{3}{5}

Hypothenus

Length opposite ∠A

=

AD

DE

=

10

6

=

5

3

\dfrac{Length \ adjacent\ \angle A}{Hypothenus} = \dfrac{AE}{AD} = \dfrac{8}{10} = \dfrac{4}{5}

Hypothenus

Length adjacent ∠A

=

AD

AE

=

10

8

=

5

4

\dfrac{Length \ opposite \ \angle A}{Length \ adjacent \ \angle A} = \dfrac{DE}{AE} = \dfrac{6}{8} = \dfrac{3}{4}

Length adjacent ∠A

Length opposite ∠A

=

AE

DE

=

8

6

=

4

3

Calculate the ratios in the table using the side lengths that you recorded in Part-example-1
User Jake Toronto
by
3.5k points