218k views
5 votes
Calculate the number of each atom in 2.5 gram of caco3 ​

1 Answer

2 votes

Answer:


2.5\; \rm g of
\rm CaCO_(3) would contain:

  • Approximately
    1.5 * 10^(22) calcium atoms (approximately
    0.025\; \rm mol,)
  • Approximately
    1.5 * 10^(22) carbon atoms (approximately
    0.025\; \rm mol,) and
  • Approximately
    4.5 * 10^(22) oxygen atoms (approximately
    0.075\; \rm mol.)

Step-by-step explanation:

Look up the Avogadro constant:
N_(\rm A) \approx 6.022 * 10^(23)\; \rm mol^(-1).

For example, "
1\; \rm mol of carbon atoms" would contain
N_(\rm A) carbon atoms (approximately
6.022* 10^(23)) by definition.

Look up the relative atomic mass of carbon, calcium, and oxygen on a modern periodic table:

  • Calcium:
    40.078.
  • Carbon:
    12.011.
  • Oxygen:
    15.999.

In other words, the mass of
1\; \rm mol of calcium atoms would be
40.078\; \rm g. The mass of
1\; \rm mol\! of carbon atoms would be
12.011\; \rm g, and the mass of
1\; \rm mol \!\! of oxygen atoms would be
15.999\; \rm g.

As the formula
\rm CaCO_(3) suggests, every formula unit of this ionic compound includes one calcium atom, one carbon atom, and three oxygen atoms. The formula mass of
\rm CaCO_(3)\! would give the mass of every mole of
\rm CaCO_(3)\!\! formula units.

Calculate the formula mass of
\rm CaCO_(3) from the relative atomic mass data:


\begin{aligned} & M({\rm CaCO_(3)}) \\ =\; & 40.078\; \rm g \cdot mol^(-1) \\ & + 12.011\; \rm g \cdot mol^(-1) \\ & + 3 * (15.999\; \rm g \cdot mol^(-1)) \\ =\; & 100.086\; \rm g \cdot mol^(-1)\end{aligned}.

Calculate the number of
\rm CaCO_(3) formula units in that
2.5\; \rm g of this compound:


\begin{aligned}& n({\rm CaCO_(3)}) \\ =\; & \frac{m({\rm CaCO_(3)})}{M({\rm CaCO_(3)})} \\ =\; & (2.5\; \rm g)/(100.086\; \rm g \cdot mol^(-1)) \\ \approx\; & 0.025\; \rm mol\end{aligned}.

In other words,
2.5\; \rm g of
\rm CaCO_(3) would contain approximately
0.025\; \rm mol
\rm CaCO_(3)\! formula units.

Again, there are one calcium atom, one carbon atom, and one oxygen atom in every
\rm CaCO_(3) formula unit. That approximately
0.025\; \rm mol
\rm CaCO_(3)\! formula units would thus contain:

  • Approximately
    1 * 0.025\; \rm mol = 0.025\; \rm mol calcium atoms,
  • Approximately
    1 * 0.025\; \rm mol = 0.025\; \rm mol carbon atoms, and
  • Approximately
    3 * 0.025\; \rm mol = 0.075\; \rm mol oxygen atoms.

Make use of the Avogadro constant to convert the numbers.

For example, the number of calcium atoms in that approximately
0.025\; \rm mol of calcium atoms would be:


\begin{aligned} & N({\text{calcium}) \\ = \; & n({\text{calcium}) \cdot N_(\rm A) \\ \approx \; & 0.025\; \rm mol * 6.022* 10^(23) \cdot mol^(-1) \\ \approx \; & 1.5 * 10^(22) \end{aligned}.

Likewise, the number of carbon atoms in that approximately
0.025\; \rm mol of carbon atoms would be:


\begin{aligned} & N({\text{carbon}) \\ = \; & n({\text{carbon}) \cdot N_(\rm A) \\ \approx \; & 0.025\; \rm mol * 6.022* 10^(23) \cdot mol^(-1) \\ \approx \; & 1.5 * 10^(22) \end{aligned}.

The number of oxygen atoms in that approximately
0.075\; \rm mol of oxygen atoms would be:


\begin{aligned} & N({\text{oxygen}) \\ = \; & n({\text{oxygen}) \cdot N_(\rm A) \\ \approx \; & 0.075\; \rm mol * 6.022* 10^(23) \cdot mol^(-1) \\ \approx \; & 4.5 * 10^(22) \end{aligned}.

User Steven Morad
by
4.4k points