61,247 views
22 votes
22 votes
Factoring polynomials
Factor each completely
14x^2. — 32x — 30
32x^2 — 8x — 4

User JoshFinnie
by
2.3k points

1 Answer

14 votes
14 votes

Factorisation of a quadratic polynomial of the type ax² + bx + c where (a ≠ 1) .

  • To factorise ax² + bx + c, we have to find two numbers whose sum is equal to the coefficient of x and product is equal to the coefficient of x² and constant term.

Now,

Solution (1) :


{ \qquad \sf { \dashrightarrow{ 14x^2 - 32x - 30 }}}


{ \qquad \sf { \dashrightarrow{ 2(7x^2 - 16x - 15) }}}


{ \qquad \sf { \dashrightarrow{ 2(7x^2 + 5x - 21x - 15) }}}


{ \qquad \sf { \dashrightarrow{ 2[x(7x + 5) - 3(7x + 5)] }}}


{ \qquad \bf { \dashrightarrow{ 2(x - 3)(7x + 5) }}}

Solution (2) :


\qquad \sf\dashrightarrow{ 32x^2 - 8x - 4 }


{ \qquad \sf { \dashrightarrow{ 4(8x {}^(2) - \: }}} \sf2x - 1)


{ \qquad \sf { \dashrightarrow{ 4(8x {}^(2) - 4x + \: \sf2x - 1)}}}


{ \qquad \sf { \dashrightarrow{ 4[4x(2x-1) +1(2x-1)] }}}


{ \qquad \bf { \dashrightarrow{ 4( 4x + 1)(2x-1) }}}

User Vladimir Sitnikov
by
3.0k points