Factorisation of a quadratic polynomial of the type ax² + bx + c where (a ≠ 1) .
- To factorise ax² + bx + c, we have to find two numbers whose sum is equal to the coefficient of x and product is equal to the coefficient of x² and constant term.
Now,
Solution (1) :
![{ \qquad \sf { \dashrightarrow{ 14x^2 - 32x - 30 }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lpil1idvp83xb9xtua510itjljemywjsyu.png)
![{ \qquad \sf { \dashrightarrow{ 2(7x^2 - 16x - 15) }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8smsqfi4oaz4j4kumxsmcqccyo5gcnb2pg.png)
![{ \qquad \sf { \dashrightarrow{ 2(7x^2 + 5x - 21x - 15) }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5qlsiai2ntfhw0tfprr8wegchyo3wzv019.png)
![{ \qquad \sf { \dashrightarrow{ 2[x(7x + 5) - 3(7x + 5)] }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/r5s62h38ygr4mu41q0up4d07egti5qe3b0.png)
![{ \qquad \bf { \dashrightarrow{ 2(x - 3)(7x + 5) }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zplbad2r5w0fq85tctxzt33acf5e9qas9i.png)
⠀
Solution (2) :
![\qquad \sf\dashrightarrow{ 32x^2 - 8x - 4 }](https://img.qammunity.org/2023/formulas/mathematics/high-school/grnscawcgf84tj2sxuv3ufnq2o7m1y8qtg.png)
![{ \qquad \sf { \dashrightarrow{ 4(8x {}^(2) - \: }}} \sf2x - 1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/p7363692t8yr4cw2ftjrzfc3rywo25ohbp.png)
![{ \qquad \sf { \dashrightarrow{ 4(8x {}^(2) - 4x + \: \sf2x - 1)}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5on73eoxrk7sn7ncnjlmyv7riogyzdkq3f.png)
![{ \qquad \sf { \dashrightarrow{ 4[4x(2x-1) +1(2x-1)] }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/m0smogmqhxr03193qi6ffxj0m6j7v4232e.png)
![{ \qquad \bf { \dashrightarrow{ 4( 4x + 1)(2x-1) }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nrft2pq8rsgg3zocm2a5tja75avtulvnat.png)