131k views
11 votes
Find the area of the shade region if d=18 units. Round to the nearest tenth.

Find the area of the shade region if d=18 units. Round to the nearest tenth.-example-1
User OmerGertel
by
3.4k points

2 Answers

7 votes

Answer:

Area of shaded region = 254.5 square units

Explanation:

We have 3 semicircles:

d = 18 units

Semicircle 1 = The big semicircle

Semicircle 2 and 3 = The two small semicircles

Semicircle 2 = 18 units

Semicircle 3 = 18 units

Semicircle 1 = Semicircle 2 + Semicircle 3 = 36 units

Radius = Half of the diameter

Semicircle 1 radius = 18 units

Semicircle 2 radius = 9 units

Semicircle 3 radius = 9 units


\mathrm{Area\:of\:a\:semicircle = ( \pi r^2 )/( 2 )}


\mathrm{Area\:of\:shaded\:region = Area\:of\:Semicircle\:1 - (Area\:of\:Semicircle\:2 + Area\:of\:Semicircle\:3)}


\mathrm{Area\:of\:shaded\:region = ( \pi r^2 )/( 2 ) - ( ( \pi r^2 )/( 2 ) + ( \pi r^2 )/( 2 ) )}


\mathrm{Substitute\:the\:numbers\:into\:the\:equation}


\mathrm{Area\:of\:shaded\:region = ( \pi (18)^2 )/( 2 ) - ( ( \pi (9)^2 )/( 2 ) + ( \pi (9)^2 )/( 2 ) )}


\mathrm{Do\:all\:of\:the\:exponents\:first}


\mathrm{Area\:of\:shaded\:region = ( \pi*324 )/( 2 ) - ( ( \pi*81)/( 2 ) + ( \pi*81)/( 2 ) )}


\mathrm{Combine\:( \pi*81)/( 2 )\:and\:( \pi*81)/( 2 )\:to\:get\:\pi*81}


\mathrm{Area\:of\:shaded\:region = ( \pi*324 )/( 2 ) - ( \pi*81 )}


\mathrm{Divide\: \pi *324\:by\:2}


\mathrm{Area\:of\:shaded\:region = { \pi*162} - \pi*81}


\mathrm{Combine\:\pi *162\:and\:- \pi *81}


\mathrm{Area\:of\:shaded\:region = 81\pi}


\mathrm{Area\:of\:shaded\:region = 254.469004941}

Area of shaded region rounded to the nearest tenth is: 254.5 square units

look at the picture for more information

Find the area of the shade region if d=18 units. Round to the nearest tenth.-example-1
User Sussan
by
3.9k points
5 votes

Answer:

29.3 units^2

Explanation:

sorry for no explanation

User Aleah
by
3.4k points