82.1k views
2 votes
Differentiate with respect to x : 2xe^x​

User Ravenwing
by
3.1k points

2 Answers

1 vote

Answer:


{ \tt{y = 2 {xe}^(x) }}

» We are going to use product rule of ∂


{ \boxed{ \tt{ \: (dy)/(dx) = { \huge{ \red{v}}} (du)/(dx) } + { \huge{ \green{u}}} (dv)/(dx) }}

  • v is e^x
  • u is 2x
  • du/dx is 2
  • dv/dx is e^x


{ \tt{ (dy)/(dx) = ( {e}^(x) )(2) + (2x)( {e}^(x) )}} \\ \\ { \tt{ (dy)/(dx) = 2 {e}^(x) + 2x {e}^(x) }} \\ \\ { \boxed{ \rm{ \: (dy)/(dx) = 2 {e}^(x)(1 + x) }}}

User Vishal Sonawane
by
3.2k points
1 vote


\\ \sf\longmapsto (d)/(dx)2xe^x

  • Apply product rule


\\ \sf\longmapsto (d)/(dx)2x(e^x)


\\ \sf\longmapsto 2x(d)/(dx)e^x+e^x(d)/(dx)2x


\\ \sf\longmapsto 2xe^x+2e^x


\\ \sf\longmapsto 2e^x(x+1)

User Junchaw
by
3.4k points