Answer:
![\mathsf{y=-2x+10}](https://img.qammunity.org/2023/formulas/mathematics/college/wowq9wg9pkw85tormdbkeigr4wysko3cbs.png)
Explanation:
slope-intercept form of a linear equation: y = mx + b
(where m is the slope and b is the y-intercept)
point-slope form of a linear equation:
![\mathsf{y-y_1=m(x-x_1)}](https://img.qammunity.org/2023/formulas/mathematics/college/fcrlwi8td82t81j7yxvf6bzejgz9xcar58.png)
(where m is the slope and
is the point)
Given:
- m = -7
![\mathsf{(x_1,y_1)=(7,-4)}](https://img.qammunity.org/2023/formulas/mathematics/college/cb89r2isvq3s2f9n3q2nq5isnla9hws3fo.png)
Substitute these values into the point-slope equation:
![\mathsf{y--4=-2(x-7)}](https://img.qammunity.org/2023/formulas/mathematics/college/q1ov68m8ipkm3nyxf6hhwapz7kivehclhq.png)
![\mathsf{y+4=-2(x-7)}](https://img.qammunity.org/2023/formulas/mathematics/college/dprwb9r4oprr0ex0j7imbst9bb1u2ahyv1.png)
Now rearrange to put into slope-intercept form by making y the subject:
![\mathsf{y+4=-2x+14}](https://img.qammunity.org/2023/formulas/mathematics/college/rlebbq4gy80surm3eizrnwz1m9kgs63geh.png)
![\mathsf{y=-2x+10}](https://img.qammunity.org/2023/formulas/mathematics/college/wowq9wg9pkw85tormdbkeigr4wysko3cbs.png)