Answer:
The equation of the perpendicular line (PR) to line PQ is; y = -0.5x - 1.5
Explanation:
The line is perpendicular to line adjoined by points P(-3,0) and Q(0,6)
The slope of line PQ is;
Slope = change in y ÷ change in x =
= 2
The product of slopes of two perpendicular lines = -1
Hence the slope of line PR = -1 ÷ slope of line PQ = -1/2
Taking another point (x,y) and point P(-3,0) the equation of line PR is;
Slope =
![(y - 0)/(x - -3) = -(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/o3j8imw48kwjcxbzaxv1jh35isyvannmaq.png)
Cross-multiplying gives;
2y = -x - 3 , y = -x/2 - 3/2 , y = -0.5x - 1.5