3x ⁴ = 3x ² • x ². Then
(3x ⁴ - 2x ³ + 4x - 5) - 3x ² (x ² + 4) = -2x ³ - 12x ² + 4x - 5
-2x ³ = -2x • x ². Then
(-2x ³ - 12x ² + 4x - 5) - (-2x) (x ² + 4) = -12x ² + 12x - 5
-12x ² = -12 • x ². Then
(-12x ² + 12x - 5) - (-12) (x ² + 4) = 12x + 43
So we've shown
