We're given
![\displaystyle y_1(x) = 1 + \frac x3 + (x^2)/(24) + (x^3)/(360) + \cdots = \sum_(n=0)^\infty a_nx^n](https://img.qammunity.org/2022/formulas/physics/college/sqqqbzpf30ooroeka5a63ifznv5b5i28xy.png)
so let's see if we can find a closed form for the n-th term's coefficient.
Notice that
![\displaystyle a_0 = 1 \\\\ a_1 = \frac13 = \frac1{1*3} \\\\ a_2 = \frac1{24} = \frac1{(1*3) * (2*4)} \\\\ a_3 = \frac1{360} = \frac1{(1*3) * (2*4) * (3*5)}](https://img.qammunity.org/2022/formulas/physics/college/3l2bqm9fz5dgt3sbez4yf0y4h9xa0z4e1s.png)
If the pattern continues, the next few terms are likely
![\displaystyle a_4 = \frac1{8640} = \frac1{(1*3) * (2*4) * (3*5) * (4*6)} \\\\ a_5 = \frac1{302400} = \frac1{(1*3) * (2*4) * (3*5) * (4*6) * (5*7)} \\\\ a_6 = \frac1{14515200} = \frac1{(1*3) * (2*4) * (3*5) * (4*6) * (5*7) * (6*8)}](https://img.qammunity.org/2022/formulas/physics/college/flm2nf4yg9b496k3gpycr8uoxrtypz7qwv.png)
which leads up to the n-th term,
![\displaystyle a_n = \frac1{(1*3) * (2*4) * \cdots * (n*(n+2))} = \frac2{n!(n+2)!}](https://img.qammunity.org/2022/formulas/physics/college/b7byvdg5yo1horha17sqxk08l9n48b6ldt.png)
where the numerator is multiplied by 2 in order to "complete" the factorial pattern in (n + 2)!.
So we have
![\displaystyle y_1(x) = \sum_(n=0)^\infty \frac2{n!(n+2)!} x^n](https://img.qammunity.org/2022/formulas/physics/college/6smll3vj2tjysi8rr01sqrjndtlu8j2u8s.png)
Now we use reduction of order to find a linearly independent solution of the form
, with derivatives
![\displaystyle (\mathrm dy_2)/(\mathrm dx) = v(x) (\mathrm dy_1)/(\mathrm dx) + y_1(x) (\mathrm dv)/(\mathrm dx) \\\\ (\mathrm d^2y_2)/(\mathrm dx^2) = v(x) (\mathrm d^2y_1)/(\mathrm dx) + 2 (\mathrm dv)/(\mathrm dx) (\mathrm dy_1)/(\mathrm dx) + y_1(x) (\mathrm d^2v)/(\mathrm dx^2)](https://img.qammunity.org/2022/formulas/physics/college/y6zd3a5ev3tllutldtmngytaxt8tz4ytgc.png)
Substitute
and its derivatives into the DE, and simplify the resulting expression to get a DE in terms of v(x) :
![\displaystyle x y_1 (\mathrm d^2v)/(\mathrm dx^2) + \left(2x(\mathrm dy_1)/(\mathrm dx)+3y_1\right)(\mathrm dv)/(\mathrm dx) + \left(x(\mathrm d^2y_1)/(\mathrm dx^2)+3(\mathrm dy_1)/(\mathrm dx)-y_1\right)v = 0](https://img.qammunity.org/2022/formulas/physics/college/32f9sqqig3qbzhsgp6jo6d9iw9vthclq8u.png)
but since we know
satisfies the original DE, the last term vanishes and we're left with
![\displaystyle x y_1 (\mathrm d^2v)/(\mathrm dx^2) + \left(2x(\mathrm dy_1)/(\mathrm dx)+3y_1\right)(\mathrm dv)/(\mathrm dx) = 0](https://img.qammunity.org/2022/formulas/physics/college/u66euaffwjzv5erwa6wnivzxb161u5zqzi.png)
Reduce the order by substituting
to get yet another DE in w(x) :
![\displaystyle x y_1 (\mathrm dw)/(\mathrm dx) + \left(2x(\mathrm dy_1)/(\mathrm dx)+3y_1\right)w = 0](https://img.qammunity.org/2022/formulas/physics/college/h3unr1gyxxp4zd78kyrqnplyqofqyzjsto.png)
This equation is separable:
![\displaystyle \frac{\mathrm dw}w = - (2x(\mathrm dy_1)/(\mathrm dx)+3y_1)/(xy_1)\,\mathrm dx \\\\ \frac{\mathrm dw}w = -\left(\frac2{y_1}(\mathrm dy_1)/(\mathrm dx) + \frac3x\right)\,\mathrm dx](https://img.qammunity.org/2022/formulas/physics/college/9f8on23a7byybvtr4mh9k5dsat32ewb97x.png)
From here you would integrate to solve for w(x), then integrate again to solve for v(x), and finally for
by multiplying
by v(x). Using the fundamental theorem of calculus, you would find
![\displaystyle \ln|w| = -2 \int_1^x \frac{{y_1}'(\xi)}{y_1(\xi)}\,\mathrm d\xi - 3\ln|x| + C_1 \\\\ w = (C_1)/(x^3) \exp\left(-2 \int_1^x \frac{{y_1}'(\xi)}{y_1(\xi)} \,\mathrm d\xi\right)\right) \\\\ v = C_1 \int_1^x \frac1{\omega^3} \exp\left(-2 \int_1^\omega \frac{{y_1}'(\xi)}{y_1(\xi)}\,\mathrm d\xi\right) \,\mathrm d\omega + C_2](https://img.qammunity.org/2022/formulas/physics/college/14y4t6vle6prpsjos88nuwqb85u03lbfkh.png)
so that you end up with
![\displaystyle y_2(x) = C_1 y_1(x) \int_1^x \frac1{\omega^3} \exp\left(-2 \int_1^\omega \frac{{y_1}'(\xi)}{y_1(\xi)}\,\mathrm d\xi\right) \,\mathrm d\omega + C_2y_1(x)](https://img.qammunity.org/2022/formulas/physics/college/k0y3r0tlk893uet2jx4tz9qfnxo08j3gxg.png)
But the second term is already accounted for by
itself, so the second solution is
![\displaystyle y_2(x) = \boxed{y_1(x) \int_1^x \frac1{\omega^3} \exp\left(-2 \int_1^\omega \frac{{y_1}'(\xi)}{y_1(\xi)}\,\mathrm d\xi\right) \,\mathrm d\omega}](https://img.qammunity.org/2022/formulas/physics/college/rk8hvhj0wmxbs4nb05hcftawrtzl1rrb7b.png)
You could go the extra mile and try to find a power series expression for this solution, but that's a lot of work for little payoff IMO.