213k views
2 votes
Look at this cone:

,,

Look at this cone: ,,-example-1

1 Answer

5 votes
  • Slant height=l=3ft
  • Radius=r=2ft

We know


\boxed{\sf \star TSA_((Cone))=\pi r(r+\ell)}


\\ \sf\longmapsto TSA_((Old\:Cone))=2</p><p> (22)/(7)* 2(2+3)


\\ \sf\longmapsto TSA_((Old\:Cone))=(44)/(7)(5)


\\ \sf\longmapsto TSA_((Old\:Cone))=(220)/(7)


\\ \sf\longmapsto TSA_((Old\:Cone))=31.4ft^2

Now

  • New slant height =2(3)=6cm
  • New radius=2(2)=4cm


\\ \sf\longmapsto TSA_((New\:Cone))=(22)/(7)* 4(4+6)


\\ \sf\longmapsto TSA_((New\:Cone))=(88)/(7)(10)


\\ \sf\longmapsto TSA_((New\:Cone))=(880)/(7)


\\ \sf\longmapsto TSA_((New\:Cone))=125.7cm^2

So


\\ \sf\longmapsto (TSA_((New\:Cone)))/(TSA_((Old\:Cone)))=(125.7)/(31.4)


\\ \sf\longmapsto (TSA_((New\:Cone)))/(TSA_((Old\:Cone)))=(4)/(1)


\\ \sf\longmapsto\underline{\boxed{\bf{ {TSA_((New\:Cone))}:{TSA_((Old\:Cone))}=4:1}}}

User Ibrahim
by
4.1k points