158k views
3 votes
Prove (sinxsiny-cosxcosy)(sinxsiny+cosxcosy) =sin^2x-cos^2y

User Mattiast
by
3.8k points

1 Answer

6 votes

Explanation:

Recall that
\sin^2x + \cos^2x = 1


(\sin x \sin y - \cos x \cos y)(\sin x \sin y + \cos x \cos y)


= \sin^2 x \sin^2 y - \cos^2 x \cos^2 y


= \sin^2 x (1 - \cos^2 y) - \cos^2 x \cos^2 y


= \sin^2 x - \sin^2 x \cos^2y - \cos^2x \cos^2y


= \sin^2x - (\sin^2x + \cos^2x)\cos^2y


= \sin^2x - \cos^2y