Answer:
∠VSU = 138°
Explanation:
ST bisects ∠VSU
So, ∠VST = ∠TSU
6z + 3 = 3(z + 12)
6z + 3 = 3z + 3*12 {distributive property}
6z + 3 = 3z + 36 {Subtract 3 from both sides}
6z = 3z + 36 - 3
6z = 3z + 33 {Subtract 3x from both sides}
6z - 3z = 33
3z = 33 {Divide both sides by 3}
z = 33/3
z = 11
∠VST = 6z + 3 = 6 *11 + 3
= 66 + 3
= 69
∠VSU = 69 + 69 = 138°