119k views
3 votes
When x=1,2,3,.... find limit x->infinity

choice
a. 0
b. 1
c. 2
d. 3
f. 4
help me!!!


When x=1,2,3,.... find limit x->infinity choice a. 0 b. 1 c. 2 d. 3 f. 4 help me-example-1
User Bosskovic
by
8.4k points

1 Answer

3 votes

Let y = √x, so the limit can be rewritten as


\displaystyle \lim_(y\to\infty)\left((√(y^6+y^2))/(y^2+3) - (√(y^4+1))/(y+4)\right)

Now,


√(y^6+y^2) = √(y^2\left(y^4+1\right)) = y√(y^4+1)

so we can rewrite the limit further as


\displaystyle \lim_(y\to\infty)\left((y)/(y^2+3) - \frac1{y+4}\right)√(y^4+1)

Combine the rational terms:


\frac y{y^2+3} - \frac1{y+4} = (y(y+4)-(y^2+3))/((y^2+3)(y+4)) = (4y-3)/((y^2+3)(y+4))

Then in the limit, we get


\displaystyle \lim_(y\to\infty)((4y-3)√(y^4+1))/((y^2+3)(y+4)) = \lim_(y\to\infty)\frac{(4y^3-3y^2)\sqrt{1+\frac1{y^4}}}{y^3+4y^2+3y+12} \\\\ = \lim_(y\to\infty)\frac{\left(4-\frac3y\right)\sqrt{1+\frac1{y^4}}}{1+\frac4y+\frac3{y^2}+(12)/(y^3)} = \boxed{4}

User Mustansir
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories