119k views
3 votes
When x=1,2,3,.... find limit x->infinity

choice
a. 0
b. 1
c. 2
d. 3
f. 4
help me!!!


When x=1,2,3,.... find limit x->infinity choice a. 0 b. 1 c. 2 d. 3 f. 4 help me-example-1
User Bosskovic
by
5.4k points

1 Answer

3 votes

Let y = √x, so the limit can be rewritten as


\displaystyle \lim_(y\to\infty)\left((√(y^6+y^2))/(y^2+3) - (√(y^4+1))/(y+4)\right)

Now,


√(y^6+y^2) = √(y^2\left(y^4+1\right)) = y√(y^4+1)

so we can rewrite the limit further as


\displaystyle \lim_(y\to\infty)\left((y)/(y^2+3) - \frac1{y+4}\right)√(y^4+1)

Combine the rational terms:


\frac y{y^2+3} - \frac1{y+4} = (y(y+4)-(y^2+3))/((y^2+3)(y+4)) = (4y-3)/((y^2+3)(y+4))

Then in the limit, we get


\displaystyle \lim_(y\to\infty)((4y-3)√(y^4+1))/((y^2+3)(y+4)) = \lim_(y\to\infty)\frac{(4y^3-3y^2)\sqrt{1+\frac1{y^4}}}{y^3+4y^2+3y+12} \\\\ = \lim_(y\to\infty)\frac{\left(4-\frac3y\right)\sqrt{1+\frac1{y^4}}}{1+\frac4y+\frac3{y^2}+(12)/(y^3)} = \boxed{4}

User Mustansir
by
5.5k points