Answer:
![x = 34^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/shoqmj4xudwjw6r7r8y4beipsq06lrq00e.png)
Explanation:
Note that ∠TSU and ∠PSR are vertical angles. Hence:
![m\angle TSU = m\angle PSR](https://img.qammunity.org/2022/formulas/mathematics/high-school/o512q4dl8gpfu3gdst6g5tdspg563p8ows.png)
∠PSR is the sum of ∠PSQ and ∠QSR. Hence:
![\displaystyle m\angle TSU = m\angle PSQ + m\angle QSR](https://img.qammunity.org/2022/formulas/mathematics/high-school/u2z0j52rekcamejgn2rbal5p9bwyumfr4w.png)
We know that ∠TSU measures 4x and ∠QSR measures 3x. Thus:
![(4x) = m\angle PSQ + (3x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6cg1g47k0qpyk8hre3rbjdfcjmfuesjyan.png)
Solve for ∠PSQ:
![m\angle PSQ = x](https://img.qammunity.org/2022/formulas/mathematics/high-school/t6xdg3nca66y5dkhj5gbmxefaetgvu15ye.png)
Next, ∠PQS and ∠RQS form a linear pair. Thus:
![m\angle PQS + m\angle RQS = 180^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/gr1dt3xfkewqmex1ukzg83top3i9s5pffq.png)
∠RQS measures 68°. Thus:
![m\angle PQS +(68^\circ) = 180^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/xecudp1zwwj9tw2g2xraijyqrzpkjvpzrq.png)
Solve for ∠PQS:
![m\angle PQS = 112^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/vpd8px412xqjwlny7tx5h0r4jwg8mh6jel.png)
The interior angles of a triangle must total 180°. So, for ΔPQS:
![\displaystyle m\angle SPQ + m\angle PQS + m\angle PSQ = 180^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/rkq9aejwpoqt1tpdq37agnu32szi9qzkjv.png)
Substitute in the known values:
![(x) + (112^\circ) + (x) = 180^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/6m3i56dtaalgvsmds7lyuiiwyjgr1moj2l.png)
Simplify:
![2x = 68^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/vwn3zhscafbsfd35ufg8mq0cjrzt0cch2c.png)
And divide. Hence:
![x = 34^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/shoqmj4xudwjw6r7r8y4beipsq06lrq00e.png)