128k views
0 votes
22. The ratio in which (4, 5) divides the join of (2, 3)

and (7, 8) is :
(a) 4 : 3
(c) 3 : 2
(b) 5:2
(d) 2:3


User Minexew
by
7.5k points

1 Answer

3 votes

Let the ratio be m:n

  • (x,y)=(4,5)
  • Points be (x1,y1)=(2,3)
  • (x2,y2)=(7,8)

We know


\boxed{\sf (x,y)=\left((mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n)\right)}


\\ \sf\longmapsto (4,5)=\left((7m+2n)/(m+n),(8m+3n)/(m+n)\right)

Now

.
\\ \sf\longmapsto (7m+2n)/(m+n)=4\dots(1)


\\ \sf\longmapsto (8m+3n)/(m+n)=5\dots(2)

Adding both


\\ \sf\longmapsto (7m+2n+8m+3n)/(m+n)=4+5


\\ \sf\longmapsto (7m+8m+2n+3n)/(m+n)=9


\\ \sf\longmapsto (15m+5n)/(m+n)=9


\\ \sf\longmapsto 15m+5n=9(m+n)


\\ \sf\longmapsto 15m+5n=9m+9n


\\ \sf\longmapsto 15m-9m=9n-5n


\\ \sf\longmapsto 6m=4n


\\ \sf\longmapsto (m)/(n)=(6)/(4)


\\ \sf\longmapsto (m)/(n)=(3)/(2)


\\ \sf\longmapsto m:n=3:2

Option B is correct

User Bratsche
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories