215k views
2 votes
Would be very happy if you helped.Don’t spam guys

Would be very happy if you helped.Don’t spam guys-example-1
User Olsgaard
by
3.4k points

1 Answer

2 votes


\\ \sf\longmapsto 41sin\Theta=40


\\ \sf\longmapsto sin\Theta=(40)/(41)

Now


\boxed{\sf cos\Theta=√(1-sin^2\Theta)}


\\ \sf\longmapsto cos\Theta=\sqrt{1-\left((40)/(41)\right)^2}


\\ \sf\longmapsto cos\Theta=\sqrt{1-(1600)/(1682)}


\\ \sf\longmapsto cos\Theta=\sqrt{(1681-1600)/(1681)}


\\ \sf\longmapsto cos\Theta=\sqrt{(81)/(1681)}


\\ \sf\longmapsto cos\Theta=(9)/(41)

We know


\boxed{\sf tan\Theta=(Sin\theta)/(Cos\Theta)}


\\ \sf\longmapsto (tan\Theta)/(1-tan^2\Theta)


\\ \sf\longmapsto ((sin\Theta)/(cos\Theta))/(1-(sin^2\Theta)/(cos^2\Theta))


\\ \sf\longmapsto ((\left((40)/(41)\right))/(\left((9)/(41)\right)))/(1-(\left((40)/(41)\right)^2)/(\left((9)/(41)\right)^2))


\\ \sf\longmapsto \frac{\frac{{40}}{{9}}}{1-\frac{{40}^2}{{9}^2}}


\\ \sf\longmapsto ((40)/(9))/((9^2-40^2)/(9^2))


\\ \sf\longmapsto ((40)/(9))/((81-1600)/(81))


\\ \sf\longmapsto ((40)/(9))/((-1519)/(81))


\\ \sf\longmapsto {\frac{40}{\cancel{9}}}* \frac{\cancel{81}}{(-1519)}


\\ \sf\longmapsto (40* 9)/((-1519))


\\ \sf\longmapsto - (360)/(1519)

User Serzas
by
3.3k points