Answer:
![\rm \displaystyle y' = 2 {e}^(2x) + (1)/(x) {e}^(2x) + 2 \ln(x) {e}^(2x)](https://img.qammunity.org/2022/formulas/mathematics/college/4xy5456qtc32kfmm3oo9ohpgyeuedqcai7.png)
Explanation:
we would like to figure out the differential coefficient of
![e^(2x)(1+\ln(x))](https://img.qammunity.org/2022/formulas/mathematics/college/e4ilh6mfdhiiffejxn47moibjkrqu66jhf.png)
remember that,
the differential coefficient of a function y is what is now called its derivative y', therefore let,
![\displaystyle y = {e}^(2x) \cdot (1 + \ln(x) )](https://img.qammunity.org/2022/formulas/mathematics/college/w1ik6imr4ydxlokzpwkcb81gr71ycxkdhk.png)
to do so distribute:
![\displaystyle y = {e}^(2x) + \ln(x) \cdot {e}^(2x)](https://img.qammunity.org/2022/formulas/mathematics/college/xy11rrhuwlxvejzl4br4ctoqtvwhctkfkn.png)
take derivative in both sides which yields:
![\displaystyle y' = (d)/(dx) ( {e}^(2x) + \ln(x) \cdot {e}^(2x) )](https://img.qammunity.org/2022/formulas/mathematics/college/q2ffju1t57jan7pw4sfeehtzynvbqs0cwl.png)
by sum derivation rule we acquire:
![\rm \displaystyle y' = (d)/(dx) {e}^(2x) + (d)/(dx) \ln(x) \cdot {e}^(2x)](https://img.qammunity.org/2022/formulas/mathematics/college/9ys4audwgvnn5rjvz8n53996h3rvz7vbkl.png)
Part-A: differentiating $e^{2x}$
![\displaystyle (d)/(dx) {e}^(2x)](https://img.qammunity.org/2022/formulas/mathematics/college/i8wtcnvi3y3zcoibqtcitwwukwrn6qlqnd.png)
the rule of composite function derivation is given by:
![\rm\displaystyle (d)/(dx) f(g(x)) = (d)/(dg) f(g(x)) * (d)/(dx) g(x)](https://img.qammunity.org/2022/formulas/mathematics/college/jt40x403czl0gxr8uha646e5on31dzwbjr.png)
so let g(x) [2x] be u and transform it:
![\displaystyle (d)/(du) {e}^(u) \cdot (d)/(dx) 2x](https://img.qammunity.org/2022/formulas/mathematics/college/7t27q1umejyhghhuoeg3luxiy8r1k7tgnq.png)
differentiate:
![\displaystyle {e}^(u) \cdot 2](https://img.qammunity.org/2022/formulas/mathematics/college/xv8tk5u53haen4genbq0sv53hnrqsmwms3.png)
substitute back:
![\displaystyle \boxed{2{e}^(2x) }](https://img.qammunity.org/2022/formulas/mathematics/college/mhj6wenkf7cmj8nbmqktq41w97jvufy654.png)
Part-B: differentiating ln(x)•e^2x
Product rule of differentiating is given by:
![\displaystyle (d)/(dx) f(x) \cdot g(x) = f'(x)g(x) + f(x)g'(x)](https://img.qammunity.org/2022/formulas/mathematics/college/vojkdisi8rc3s29jpt1mpuh0nqv0702pu6.png)
let
substitute
![\rm\displaystyle (d)/(dx) \ln(x) \cdot {e}^(2x) = (d)/(dx)( \ln(x) ) {e}^(2x) + \ln(x) (d)/(dx) {e}^(2x)](https://img.qammunity.org/2022/formulas/mathematics/college/8026lyen0akk2itd5qb4oxm5ofgzftg95p.png)
differentiate:
![\rm\displaystyle (d)/(dx) \ln(x) \cdot {e}^(2x) = \boxed{(1)/(x) {e}^(2x) + 2\ln(x) {e}^(2x) }](https://img.qammunity.org/2022/formulas/mathematics/college/si4b2gpvu8v8a909t2l44zp1e1oi8l57bb.png)
Final part:
substitute what we got:
![\rm \displaystyle y' = \boxed{2 {e}^(2x) + (1)/(x) {e}^(2x) + 2 \ln(x) {e}^(2x) }](https://img.qammunity.org/2022/formulas/mathematics/college/z7dqtjq1md4i3wif87axv65va5llcim0fg.png)
and we're done!