115k views
0 votes
Needhdjdjdjdjdjdnhiskdjdjdjdjdjdjjshdjdjdjdjdjdjdjd



Needhdjdjdjdjdjdnhiskdjdjdjdjdjdjjshdjdjdjdjdjdjdjd ​-example-1

1 Answer

2 votes

9514 1404 393

Answer:

-(√2)/2

Explanation:

The expression evaluated at n=a gives the indeterminate form 0/0, so L'Hopital's rule can be used to find the limit. The second expression comes from differentiating numerator and denominator. Then the form with n=a is no longer indeterminate.


\displaystyle\lim_(n\to a){(√(2n)-√(3n-a))/(√(n)-√(a))}=\lim_(n\to a){((2)/(2√(2n))-(3)/(2√(3n-a)))/((1)/(2√(n))-0)}\\\\=√(a)\left((2)/(√(2a))-(3)/(√(3a-a))}\right)=\boxed{-(1)/(√(2))}

User Arve Hansen
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories