183k views
1 vote
Plz plz solve this. ​

Plz plz solve this. ​-example-1

1 Answer

7 votes

Explanation:

Disclaimer: When writing this on the paper use the theta symbol, I'm using x since I'm on mobile.

2.

i).


\sin(x) \tan(x) \sec(x) = \tan {}^(2) (x)


\sin(x) \sec(x) \tan(x) = \tan {}^(2) (x)


\sin(x) (1)/( \cos(x) ) \tan(x) = \tan {}^(2) (x)


( \sin(x) )/( \cos(x) ) \tan(x) = \tan {}^(2) (x)


\tan( x) ) \tan(x) = \tan {}^(2) (x)


\tan {}^(2) (x) = \tan {}^(2) (x)

iii).


\sec {}^(2) (x) (1 - \sin {}^(2) ( x ) ) = 1


\sec {}^(2) (x) ( \cos {}^(2) (x) ) = 1


\frac{1}{ \cos {}^(2) (x) } \cos {}^(2) (x) = 1


1 = 1

v).


\cot {}^(2) (a) - \cos {}^(2) (a) = \cot {}^(2) (a) \cos {}^(2) (a)


\frac{ \cos{}^(2) (x) }{ \sin {}^(2) (x) ) } - \cos {}^(2) (x)

Factor out cosine


\cos {}^(2) (x) ( \frac{1}{ \sin {}^(2) (x) } - 1)

Simplify


\cos {}^(2) (x) ( \frac{1 - \sin {}^(2) (x) }{ \sin(x) }


\cos {}^(2) (x( \frac{ \cos {}^(2) (x) }{ \sin {}^(2) (x) } ) =


( \cos {}^(2) ( x ) ( \cot {}^(2) (x) )

User Egghese
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories