Answer:
![\displaystyle (1)/(\sin^2x)-(1)/(\tan^2x)=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/gs0rwe1gcfwhzhi3ky0bn80v56gst06ae3.png)
Explanation:
Prove that:
![\displaystyle (1)/(\sin^2x)-(1)/(\tan^2x)=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/gs0rwe1gcfwhzhi3ky0bn80v56gst06ae3.png)
Recall that by definition:
![\displaystyle \tan x=(\sin x)/(\cos x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/pl0damgqh50jkuz6csiaob4o3t7478mfp7.png)
Therefore,
![\displaystyle \tan^2x=\left ((\sin^2x)/(\cos^2x)\right)^2=(\sin^2x)/(\cos^2x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/o35azdi1gzsdp8x006br7sjpbch6as59o9.png)
Substitute
into
:
![\displaystyle (1)/(\sin^2x)-(1)/((\sin^2x)/(\cos^2x))=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/v3lujanz806pihpkwzena41srtpoq3qa0u.png)
Simplify:
![\displaystyle (1)/(\sin^2x)-(\cos^2x)/(\sin^2x)=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/74x7bghb6grjc25lw8tj3jkkbd33dhz52w.png)
Combine like terms:
![\displaystyle (1-\cos^2x)/(\sin^2x)=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/yzifl8ztay5trzjb7o5mfdee99uti1utrz.png)
Recall the following Pythagorean Identity:
(derived from the Pythagorean Theorem)
Subtract
from both sides:
![\sin^2=1-\cos^2x](https://img.qammunity.org/2022/formulas/mathematics/high-school/s8ppl4o6kto8ncm03t5fek8q1in7bwnn41.png)
Finish by substituting
into
:
![\displaystyle (\sin^2x)/(\sin^2x)=1,\\\\1=1\:\boxed{\checkmark\text{ True}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/waakt3eb9hr3kwt0etr1purvakws59qycx.png)