Answer:
![\cos \left(90 ^\circ - x\right) \approx 0.1688](https://img.qammunity.org/2022/formulas/mathematics/high-school/mvwudxlwciooy85di1kzmlb4wcb6y5vdxv.png)
Explanation:
We are given that:
![\displaystyle \tan x = (3)/(7)](https://img.qammunity.org/2022/formulas/mathematics/high-school/idnw4s4zlr9sq85leulppnga99my83qnkx.png)
And we want to find the value of:
![\displaystyle \cos \left(90^\circ - x\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/5wdpcuchh5llylm2kt0j5j21na066oqqj6.png)
Recall that by definition, tan(θ) = sin(θ) / cos(θ). Hence:
![\displaystyle (\sin x )/(\cos x) = (3)/(7)](https://img.qammunity.org/2022/formulas/mathematics/high-school/uitdqweg8v5j5s5hgyc4l9bje3tykiq6ka.png)
And by definition, sin(θ) = cos(90° - θ). Hence:
![\displaystyle (\cos \left(90^\circ - x\right))/(\cos x) = (3)/(7)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7y12dt86bhps2peak82npw1zv5jfyt8a71.png)
Multiply:
![\displaystyle \cos \left(90 ^\circ - x\right) = (3)/(7) \cos x](https://img.qammunity.org/2022/formulas/mathematics/high-school/run4d5o3y8grt802xzmfqszd15na2zi439.png)
Find cosine. Recall that tangent is the ratio of the opposite side to the adjacent side. Therefore, the opposite side is 3 and the adjacent side is 7.
Thus, by the Pythagorean Theorem, the hypotenuse will be:
![\displaystyle h = √(3^2 + 7^2) = √(58)](https://img.qammunity.org/2022/formulas/mathematics/high-school/51m0vkgln84iyx9tozazbh7mk432xs04m3.png)
Cosine is the ratio of the adjacent side to the hypotenuse. Therefore:
![\displaystyle \cos x = (7)/(√(58))](https://img.qammunity.org/2022/formulas/mathematics/high-school/zr3sm1aza940at9ajvks8ho4vd8t60lnpf.png)
Thus:
![\displaystyle \cos \left(90 ^\circ - x\right) = (3)/(7) \left((3)/(√(58))\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/y4sy9e3k9jthgvkfz05o9fp15wwhay3wth.png)
Use a calculator. Hence:
![\cos \left(90 ^\circ - x\right) \approx 0.1688](https://img.qammunity.org/2022/formulas/mathematics/high-school/mvwudxlwciooy85di1kzmlb4wcb6y5vdxv.png)