55.0k views
0 votes
If sinθ/secθ =1/2, find sinθ+secθ/sinθ-secθ

1 Answer

4 votes

Answer:


\displaystyle (\sin \theta + \sec \theta)/(\sin \theta - \sec\theta) = -3

Explanation:

We are given that:


\displaystyle (\sin \theta)/(\sec \theta) = (1)/(2)

And we want to find the value of:


\displaystyle (\sin \theta + \sec \theta)/(\sin \theta - \sec\theta)

From the second expression, we can divide both the numerator and denominator by sec(θ). Thus:


\displaystyle = ( (\sin \theta + \sec \theta)/(\sec \theta) )/( (\sin \theta - \sec\theta)/(\sec \theta) )

Simplify:


\displaystyle = ((\sin \theta)/(\sec \theta) + 1)/((\sin\theta)/(\sec\theta) - 1)

Since we know that sin(θ) / sec(θ) = 1 / 2:


\displaystyle = (\left((1)/(2)\right)+1)/(\left((1)/(2)\right)-1)

Evaluate:


\displaystyle = ((3)/(2))/(-(1)/(2)) = -3

Therefore:


\displaystyle (\sin \theta + \sec \theta)/(\sin \theta - \sec\theta) = -3

User Jaans
by
5.6k points