a) Magnitudes:
,
,
; Directions:
for
. Undefined for
,
for
. Undefined for
,
for
. Undefined for
.
b) Magnitudes:
,
,
; Directions:
,
is undefined.
a) Let suppose that
,
and
, where
is known as Vector Zero. By definitions of Dot Product and Inverse Trigonometric Functions we derive expression for the magnitude and directions of
,
and
:
Magnitude (
)
![\|\vec A\| = √(\vec A\,\bullet\,\vec A)](https://img.qammunity.org/2022/formulas/physics/college/c5568wy68nkwh824kipg1ksr2r3a5m4ev3.png)
![\| \vec A\| \ge 0](https://img.qammunity.org/2022/formulas/physics/college/8jju2ph0zmc3ibij12nxur1wl2jlqkyrjy.png)
Magnitude (
)
![\|\vec B\| = √(\vec B\,\bullet\,\vec B)](https://img.qammunity.org/2022/formulas/physics/college/virxlth2gtt0tbtkcqve5dffjk1sr57dva.png)
![\|\vec B\| \ge 0](https://img.qammunity.org/2022/formulas/physics/college/8ybh0zfh9i8ahb9dwm55ar7sblf7mys8mt.png)
Magnitude (
)
![\|\vec C\| = √(\vec C\,\bullet \,\vec C)](https://img.qammunity.org/2022/formulas/physics/college/zxpofpw2jlk35gvoxqqquujeent4i2of7w.png)
![\|\vec C\| \ge 0](https://img.qammunity.org/2022/formulas/physics/college/fczqlu08nz8nqp2ekm0l7448nzqh5vj6nn.png)
Direction (
)
![\vec A \,\bullet \,\vec u = \|\vec A\|\cdot \|u\|\cdot \cos \theta_(A)](https://img.qammunity.org/2022/formulas/physics/college/wxnl5yx815drvs4e3aluhvo6bt7ao2ruvw.png)
![\theta_(A) = \cos^(-1) (\vec A\,\bullet\,\vec u)/(\|\vec A\|\cdot \|u\|)](https://img.qammunity.org/2022/formulas/physics/college/48oqishmcenxct5dmz4jfkplgtg15p3x8z.png)
![\theta_(A) = \cos^(-1) (\vec A\,\bullet\,\vec u)/(\|\vec A\|)](https://img.qammunity.org/2022/formulas/physics/college/kckunezrj08cka2p9wnzhyq98o50sayfif.png)
for
. Undefined for
.
Direction (
)
![\vec B\,\bullet \, \vec u = \|\vec B\|\cdot \|\vec u\| \cdot \cos \theta_(B)](https://img.qammunity.org/2022/formulas/physics/college/rg5jfmf9eghbfu14f94z06m17mbb81llky.png)
![\theta_(B) = \cos^(-1) (\vec B\,\bullet\,\vec u)/(\|\vec B\|\cdot \|\vec u\|)](https://img.qammunity.org/2022/formulas/physics/college/9aqh1hi2dlxh6ww21altlc3c16s8vi2ydv.png)
![\theta_(B) = \cos^(-1) (\vec B\,\bullet\,\vec u)/(\|\vec B\|)](https://img.qammunity.org/2022/formulas/physics/college/wpqp6x5xijvi7iymf6bpb47eoh8gc1rlyt.png)
for
. Undefined for
.
Direction (
)
![\vec C \,\bullet\,\vec u = \|\vec C\|\cdot\|\vec u\|\cdot \cos \theta_(C)](https://img.qammunity.org/2022/formulas/physics/college/ah60fd3uxopki41a5r0a92p6l3lgzenxae.png)
![\theta_(C) = \cos^(-1)(\vec C\,\bullet\,\vec u)/(\|\vec C\|\cdot\|\vec u\|)](https://img.qammunity.org/2022/formulas/physics/college/cz46tulla1bztjf7aa3gzbegja3hrm92o1.png)
![\theta_(C) = \cos^(-1) (\vec C\,\bullet\,\vec u)/(\|\vec C\|)](https://img.qammunity.org/2022/formulas/physics/college/t6ozzgawbrwwg425ndikqpb7ri3dpzgvd5.png)
for
. Undefined for
.
Please notice that
is the Vector Unit.
b) Let suppose that
and
and
. Hence,
. In other words, we find that both vectors are antiparallel to each other, that is, that angle between
and
is 180°. From a) we understand that
,
, but
.
Then, we have the following conclusions:
Magnitude (
)
![\|\vec A\| \ge 0](https://img.qammunity.org/2022/formulas/physics/college/um24n95twjs45ry4tmugg9atlwu8y4yrkv.png)
Magnitude (
)
![\|\vec B\| \ge 0](https://img.qammunity.org/2022/formulas/physics/college/8ybh0zfh9i8ahb9dwm55ar7sblf7mys8mt.png)
Magnitude (
)
![\|\vec C\| = 0](https://img.qammunity.org/2022/formulas/physics/college/z00gkrautumqma0wdxpub7z80636u371et.png)
Directions (
,
):
![|\theta_(A)-\theta_(B)| = 180^(\circ)](https://img.qammunity.org/2022/formulas/physics/college/3pbjooyt29ch5bptehftx4wl7r3x4yvyjr.png)
Direction (
):
Undefined