8.5k views
21 votes
Find the range of values of m for which line y = 5-mx does not meet Intersect the curve x² + y = 16​

1 Answer

11 votes

Answer:

Δ
=(-m)^2-4
\bullet\left(-11\right) > 0
\ ,the\ number\ of\ intersection:
2,intersection:
\left((m)/(2)+(√(44+m^2))/(2),5-(m\left(m+√(44+m^2)\right))/(2)\right)
,\left((m)/(2)-(√(44+m^2))/(2),5-(m\left(m-√(44+m^2)\right))/(2)\right)

Explanation:


Analyze\ the\ intersection\ of\ y=5-mx\ and\

x^2+y=16:


\downarrow

Δ
=(-m)^2-4\bullet\left(-11\right) > 0\ ,the\ number\ of

intersection:\ 2,intersection:

\left((m)/(2)+(√(44+m^2))/(2),5-(m\left(m+√(44+m^2)\right))/(2)\right),


\left((m)/(2)-(√(44+m^2))/(2),5-(m\left(m-√(44+m^2)\right))/(2)\right)

I hope this helps you

:)

User Firdousi Farozan
by
4.6k points