Explanation:
Need to FinD :
- Length of the rectangular paper.
- Area of the rectangular paper.
![\red{\frak{Given}} \begin{cases} & \sf {Perimeter\ of\ the\ rectangular\ paper\ is\ {\pmb{\sf{120\ cm}}}.} \\ &\sf {Breadth\ of\ the\ rectangular\ paper\ is\ {\pmb{\sf{20\ cm}}}.} \end{cases}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cxoblwl9ah9xeu6gqb13ygvghngrmd2g9d.png)
We know that, we are given with perimeter and the breadth of the rectangular paper. And, we're asked to find out the length and the area of the rectangular paper.
- Perimeter of the rectangular paper = 120 cm.
- Breadth of the rectangular paper = 20 cm.
![{\underline{\underline{\blacksquare\ {\red{\pmb{\sf{UnderstanDing\ the\ ConcepT:}}}}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jzbg9efpvba9d0ov61uczkavuqw5zo09ds.png)
This question is from the chapter "Mensuration" which is the branch of Mathematics that deals with the computation of lengths, areas, or volumes from given dimensions or angles of a solid.
The geometric figure focused in this question are rectangle. Rectangle is a quadrilateral with four sided polygonal figure with four right angles. Also, the diagonal bisects each other.
![\begin{gathered}\begin{gathered}\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: {\huge \boxed{ \sf{ \: \: \: \: \: \: }}} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \tiny\sf{A \: rectangle} \end{gathered}\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/62gnawc2gk5gm0a6jqrzl1mnuz7l4a1e5y.png)
- Perimeter = 2(l + b)
- Area = l × b
As per the analysis, we need to find out the length and area of the paper. How can we find it? We can find it by using the topic :- "Area of rectangle". To find the required answer, we've to find out the length of the paper first. And then, we will find out the area of the paper.
![\rule{200}{3}](https://img.qammunity.org/2023/formulas/mathematics/college/ta103agmib6eb6whz2d8qtiugr1ah6ubtk.png)
![{\underline{\underline{\blacksquare\ {\red{\pmb{\sf{Finding\ length\ of\ the\ paper:}}}}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/291l9g02y1hy9kmldjbmqfg9o167paoc3i.png)
![\sf \dashrightarrow {Perimeter_((rectangular\ paper))\ =\ 2(l\ +\ b)} \\ \\ \\ \sf \dashrightarrow {120\ =\ 2(l\ +\ 20)} \\ \\ \\ \sf \dashrightarrow {\frac{\cancel{120}}{\cancel{2}}\ =\ l\ +\ 20} \\ \\ \\ \sf \dashrightarrow {60\ =\ l\ +\ 20} \\ \\ \\ \sf \dashrightarrow {60\ -\ 20\ =\ l} \\ \\ \\ \sf \dashrightarrow {40\ =\ l} \\ \\ \\ \dashrightarrow {\underbrace{\boxed{\pink{\frak{Length_((rectangular\ paper))\ =\ 40\ cm}}}}_{\sf \blue{\tiny{Required\ length}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/oi470f4j3xi3qtwtixnosvk5i0tt7uy35z.png)
∴ Hence, the required length of the rectangular paper is 40 cm. Now, let's find out the area of the rectangular paper.
![\rule{200}{3}](https://img.qammunity.org/2023/formulas/mathematics/college/ta103agmib6eb6whz2d8qtiugr1ah6ubtk.png)
![{\underline{\underline{\blacksquare\ {\red{\pmb{\sf{Finding\ area\ of\ the\ paper:}}}}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tsjinctrdvqrdk1lxa23nsn368i9sxntj3.png)
![\sf \dashrightarrow {Area_((rectangular\ paper))\ =\ l * b} \\ \\ \\ \sf \dashrightarrow {Area_((rectangular\ paper))\ =\ 40 * 20} \\ \\ \\ \dashrightarrow {\underbrace{\boxed{\pink{\frak{Area_((rectangular\ paper))\ =\ 800\ cm^2}}}}_{\sf \blue {\tiny{Required\ area}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ap5wc5e6rva1m3fchw811y8vw56mondbws.png)
∴ Hence, the required area of the rectangular paper is 800 cm².