218k views
5 votes
Sin^6x + cos^6x = 1/4

User Saritus
by
8.7k points

1 Answer

5 votes

Answer:


\displaystyle x = (\pi)/(4) + k\, \pi for integer
k (including negative numbers.)

Explanation:

Pythagorean Identity:
\sin^(2)(x) + \cos^(2)(x) = 1. Equivalently,
\cos^(2)(x) = 1 - \sin^(2)(x).

Rewrite the original equation and apply this substitution to eliminate
\cos(x):


\displaystyle \sin^(6)(x) + \cos^(6)(x) = (1)/(4).


\displaystyle (\sin^(2)(x))^(3) + (\cos^(2)(x))^(3) = (1)/(4).


\displaystyle (\sin^(2)(x))^(3) + (1 - \sin^(2)(x))^(3) = (1)/(4).

Let
y = \sin(x) (
-1 \le y \le 1.) The original equation is equivalent to the following equation about
y:


\displaystyle y^(6) + (1 - y^(2))^(3) = (1)/(4).

Expand the cubic binomial in the equation:


\displaystyle y^(6) + 1 - 3\, y^(2) + 3\, (y^(2))^(2) - (y^(2))^(3) = (1)/(4).


\displaystyle y^(6) + 1 - 3\, y^(2) + 3\, y^(4) - y^(6) = (1)/(4).

Simplify to obtain:


\displaystyle 1 - 3\, y^(2) + 3\, y^(4) = (1)/(4).

Rearrange and simplify:


12\, y^(4) - 12\, y^(2) + 3 = 0.


3\, (2\, y^(2) - 1)^(2) = 0.


2\, y^(2) - 1 = 0.


\displaystyle y^(2) - (1)/(2) = 0.

Solve for
y:

Either
\displaystyle y = (1)/(√(2)) or
\displaystyle y = -(1)/(√(2)).

If
\displaystyle \sin(x) = y = (1)/(√(2)), then
\displaystyle x = (\pi)/(4) + 2\, k\,\pi for all
k\in \mathbb{Z}.

On the other hand, if
\displaystyle \sin(x) = y = (1)/(√(2)), then
\displaystyle x = (3\, \pi)/(4) + 2\, k\,\pi = (\pi)/(4) + (2\, k + 1) \, \pi for all
k\in \mathbb{Z}.

Combine both situations to obtain:


\displaystyle x = (\pi)/(4) + 2\, k\, \pi for all
k \in \mathbb{Z}.

User Roplacebo
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories