113k views
2 votes
Tính tích phân 2 lớp:
∫∫(1+3x+2y)dxdy

User Sateesh
by
3.9k points

2 Answers

0 votes

Answer:


\\\int _(\:)^(\:)\int _(\:)^(\:)\:1+3x+2y\:dxdy=Cy+(3x^2)/(2)y+xy+xy^2+C

Explanation:


\\\int _(\:)^(\:)\int _(\:)^(\:)\:1+3x+2y\:dxdy


\int _(\:)^(\:)\left(1+3x+2y\right)\:dx\:=x+2yx\:+(3x^2)/(2)+C


=\int \left(x+2yx+(3x^2)/(2)+C\right)dy


=Cy+(3x^2)/(2)y+xy+xy^2+C

User Ofri Raviv
by
4.2k points
4 votes

We know the formula


\boxed{\displaystyle\int x^ndx=(x^(n+1))/(n+1)+c}

  • c is constant
  • Here c=1


\\ \displaystyle\longmapsto \int (1+3x+2y)dx


\\ \displaystyle\longmapsto (3x^(1+1))/(1+1)+(2y^(1+1))/(1+1)+1


\\ \sf\longmapsto (3x^2)/(2)+(2y^2)/(2)+1


\\ \sf\longmapsto (3x^2)/(2)+y^2+1


\\ \sf\longmapsto (3x^2+2y^2+2)/(2)

User Marc Liyanage
by
4.4k points