Answer:
![P(O\ or\ A) = 0.85](https://img.qammunity.org/2022/formulas/mathematics/college/of3sm4qd97ipgsfsdeily2zpy7vawgjlgy.png)
Explanation:
Given
See attachment
Required
![P(O\ or\ A)](https://img.qammunity.org/2022/formulas/mathematics/college/y962u4zdsd7rkyfmi2m24i5fa4fpejqcos.png)
From the question, we understand that she can only get blood from O or A groups. So, the probability is represented as:
This is calculated as:
![P(O\ or\ A) = P(O) + P(A)](https://img.qammunity.org/2022/formulas/mathematics/college/m8v21mdumca3wcyuswf2jqqp2tf3gqof5c.png)
Using the American row i.e. the blood must come from an American.
We have:
![P(O) = 0.45](https://img.qammunity.org/2022/formulas/mathematics/college/qwr43tkhh1q3uoead960jhkjs1fb5ndbd0.png)
![P(A) = 0.40](https://img.qammunity.org/2022/formulas/mathematics/college/lvidhjkl8f63zv2dog253cm4xb4pk0khli.png)
So, we have:
![P(O\ or\ A) = 0.45 + 0.40](https://img.qammunity.org/2022/formulas/mathematics/college/nkf3y5vrivvdqkmb2aezl3uawtjvoy8xq3.png)
![P(O\ or\ A) = 0.85](https://img.qammunity.org/2022/formulas/mathematics/college/of3sm4qd97ipgsfsdeily2zpy7vawgjlgy.png)