Answer:
The required sum is 392
Explanation:
Given the sum as shown;
![\sum \left \77} \atop {a=1}} \right. (3a^2-4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/pw533m44xhi2vu02b69f3qz4b78znu1art.png)
When n = 1
f(1) = 3(1)²-4
f(1) = 3 - 4
f(1) = - 1
When n = 2
f(2) = 3(2)²-4
f(2) = 12 - 4
f(2) = 8
When n = 3
f(3) = 3(3)²-4
f(3) = 27 - 4
f(3) = 23
When n = 4
f(4) = 3(4)²-4
f(4) = 48 - 4
f(4) = 44
When n = 5
f(5) = 3(5)²-4
f(5) = 75 - 4
f(5) = 71
When n = 6
f(6) = 3(6)²-4
f(6) = 108 - 4
f(6) = 104
When n = 7
f(7) = 3(7)²-4
f(7) = 147 - 4
f(7) = 143
Taking their sum
Sum = f(1)+f(2)+(3)+f(4)+f(5)+f(6)+f(7)
Sum = -1 + 8 + 23 + 44 + 71 + 104 + 143
Sum = 392
Hence the required sum is 392