89.9k views
2 votes
Let $x$ be the smallest number in the following list, and let $y$ be the second smallest number (that is, the smallest number other than $x$). \[ 5, \qquad -22, \qquad \frac{-4}{7}, \qquad \frac{-3}{-5}, \qquad 3, \qquad \frac{-8}{13} \]Find $\frac{x-y}{y}$. Express your answer as a fraction in simplest form.

1 Answer

0 votes

Answer:

139/4

Explanation:

and find that\[

\frac{4}{7}\cdot \frac{13}{13} = \frac{4\cdot 13}{91}=\frac{52}{91}, \text{and}

\]\[

\frac{8}{13}\cdot \frac{7}{7} = \frac{8\cdot 7}{91} = \frac{56}{91}.

\]Thus $\frac{8}{13}$ is larger than $\frac{4}{7}$, which tells us that $-\frac{8}{13}$ is smaller than $-\frac{4}{7}$. Thus, $x=-22$, $y=-\frac{8}{13}$, and\begin{align*}

\frac{x-y}{y}&=\frac{-22-\left(-\frac{8}{13}\right)}{-\frac{8}{13}}\\

&=\left(-22\cdot \frac{13}{13}+\left(\frac{8}{13}\right)\right)\cdot \left(-\frac{13}{8}\right)\\

&=\left(\frac{-286+8}{13}\right)\cdot \left(-\frac{13}{8}\right)\\

&=\left(-\frac{278}{13}\right)\cdot \left(-\frac{13}{8}\right)\\

&=\boxed{\frac{139}{4}}.

\end{align*}

User Jeremy Grand
by
4.0k points