Step-by-step explanation:
We can write Newton's 2nd law as applied to the sliding mass
as
![T - m_1g\sin38 = m_1a\:\:\:\:\:\:\:(1)](https://img.qammunity.org/2022/formulas/physics/college/amieuhawlkvx3ppx5chf9c1uee6jaxj8mz.png)
For the hanging mass
we can write NSL as
![T - m_2g = -m_2a\:\:\:\:\:\:\:(2)](https://img.qammunity.org/2022/formulas/physics/college/mkke32pagqgrn198xilzkyqabeih04hivd.png)
We need to solve for a first before we can solve the tension T. So combining Eqns(1) & (2), we get
![(m_1 + m_2)a = m_2g - m_1g\sin38](https://img.qammunity.org/2022/formulas/physics/college/5y765lhj9k66lha2986ytzzld4ahbj4p72.png)
or
![a = \left((m_2 - m_1\sin38)/(m_1 + m_2)\right)g](https://img.qammunity.org/2022/formulas/physics/college/5bhsrd45ewrmw0r8sgovdn5lh5i0sqerh6.png)
![\:\:\:\:= 0.30\:\text{m/s}^2](https://img.qammunity.org/2022/formulas/physics/college/2ijlw7o7ubzph4zbjg33xevuv2fsar80iq.png)
Using this value for the acceleration on Eqn(2), we find that the tension T is
![T = m_2(g - a) = (2.6\:\text{kg})(9.51\:\text{m/s}^2)](https://img.qammunity.org/2022/formulas/physics/college/c0qfe6szlzgitb3l3x91nr3x6az6x43l12.png)
![\:\:\:\:=24.7\:\text{N}](https://img.qammunity.org/2022/formulas/physics/college/ujyglulwglw4fcmzov2hvr2ubmv1akr9pa.png)