Answer:
Part 1)
![\displaystyle \left((2-x)^2 + 1)\right) + (2√(3) - 1 ) \left(x^2 + 1\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/999iy87fkr1orqrq6e09pu4rsnh6mn0aez.png)
Or simplified:
![\displaystyle = 2√(3)x^2 - 4x + 4 + 2√(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vccege4kwhxepkzve3vcztc3gwis1ck9kq.png)
Part 2)
The value of x for which the given expression will be the lowest is:
![\displaystyle x = (√(3))/(3)\approx 0.5774](https://img.qammunity.org/2022/formulas/mathematics/high-school/62lcfckfxcgbb8z3rcqdex6yex3a3llasc.png)
And the magnitude of ∠BAC is 60°.
Explanation:
We are given a ΔABC with an area of one. We are also given that AB = 2, BC = a, and CA = b. CD is a perpendicular line from C to AB.
Please refer to the diagram below.
Part 1)
Since we know that the area of the triangle is one:
![\displaystyle (1)/(2) (2)(CD) = 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/ze9b9lsj0azj2bzzdcwp0pgs1yr881nvsq.png)
Simplify:
![\displaystyle CD = 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/6ol5askhcjiagriuqwwflsly2uiekgnvys.png)
From the Pythagorean Theorem:
![\displaystyle x^2 + CD^2 = b^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/m11sxkai8zeeg7w7ieh0pnssjdmcxg03ta.png)
Substitute:
![x^2 + 1 = b^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/8x3z9cts826vb9zulbdze17d61ocuyxu3j.png)
BD will simply be (2 - x). From the Pythagorean Theorem:
![\displaystyle (2-x)^2 + CD^2 = a^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/st2hzkm65n1skw6xqoty97rdhme47lcr6w.png)
Substitute:
![\displaystyle (2-x)^2+ 1 = a^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/7x6nmfmfxsxp4w67gpe60jnlq37epi9qma.png)
We have the expression:
![\displaystyle a^2 + (2√(3) - 1) b^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ptg1gb543c9s1kbv9zt24oklv2ilbjrqya.png)
Substitute:
![\displaystyle = \boxed{\left((2-x)^2 + 1)\right) + (2√(3) - 1 ) \left(x^2 + 1\right)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/lb7plqgu14xnsp7xsqdmpjoawlt8m21rv5.png)
Part 2)
We can simplify the expression. Expand and distribute:
![\displaystyle (4 - 4x + x^2 + 1)+ (2√(3) -1)x^2 + 2√(3) - 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/u3esw7s3nzxznlwsp0ypcusy0fojybbgb6.png)
Simplify:
![\displaystyle = ((2√(3) -1 )x^2 + x^2) + (-4x) + (4+1-1+2√(3))](https://img.qammunity.org/2022/formulas/mathematics/high-school/kgmajs2s84u51owp642dwxcgy5qm7rxx9z.png)
Simplify:
![\displaystyle = 2√(3)x^2 - 4x + 4 + 2√(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vccege4kwhxepkzve3vcztc3gwis1ck9kq.png)
Since this is a quadratic with a positive leading coefficient, it will have a minimum value. Recall that the minimum value of a quadratic always occur at its vertex. The vertex is given by the formulas:
![\displaystyle \text{Vertex} = \left(-(b)/(2a), f\left(-(b)/(2a)\right)\right)](https://img.qammunity.org/2022/formulas/mathematics/college/iw2im96fx81lctsxvn0qi0ilszzbgo355o.png)
In this case, a = 2√3, b = -4, and c = (4 + 2√3).
Therefore, the x-coordinate of the vertex is:
![\displaystyle x = -((-4))/(2(2√(3))) = (1)/(√(3)) =\boxed{ (√(3))/(3)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/wrkqqqo0url9noipiftbrcmejox73f9cgq.png)
Hence, the value of x at which our expression will be the lowest is at √3/3.
To find ∠BAC, we can use the tangent ratio. Recall that:
![\displaystyle \tan \theta = \frac{\text{opposite}}{\text{adjacent}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/pf7uf1ucxktqfex6a23dp8rlh4yrgd4t9h.png)
Substitute:
![\displaystyle \tan \angle BAC = (CD)/(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/x6tzi8i4mdefivr39trwux49lg16kipqnh.png)
Substitute:
![\displaystyle \tan \angle BAC = (1)/((√(3))/(3)) = √(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/bnlo07myo3v7btm1pw2uybx6ckqw0nr6rt.png)
Therefore:
![\displaystyle\boxed{ m\angle BAC = \arctan√(3) = 60^\circ}](https://img.qammunity.org/2022/formulas/mathematics/high-school/e03dntcdmbk0cpow9o96aekdlvi7nu6lvo.png)