Answer:
Step-by-step explanation:
Given that:
mass of stone (M) = 0.100 kg
mass of bullet (m) = 2.50 g = 2.5 ×10 ⁻³ kg
initial velocity of stone (
) = 0 m/s
Initial velocity of bullet (
) = (500 m/s)i
Speed of the bullet after collision (
) = (300 m/s) j
Suppose we represent
to be the velocity of the stone after the truck, then:
From linear momentum, the law of conservation can be applied which is expressed as:





∴
The magnitude now is:


Using the tangent of an angle to determine the direction of the velocity after the struck;
Let θ represent the direction:

