Answer:
A) U is called an upper triangular matrix because all entries below the principal diagonal element are zeros ( 0 ) since Uij = 0 if i >j also
L is a lower triangular matrix because all entries above the principal diagonal element are zero ( 0 )
B) sum of two upper triangular matrices = upper triangular matrix.
C) product of two upper triangular matrices = upper triangular matrix
Explanation:
A) U is called an upper triangular matrix because all entries below the principal diagonal element are zeros ( 0 ) since Uij = 0 if i >j also
L is a lower triangular matrix because all entries above the principal diagonal element are zero ( 0 ) since Lij = 0 if i < j
B) To prove that sum of two upper triangular matrices
attached below
C) Prove or disprove that product of two upper triangular matrices is an upper triangular matrix
attached below