162k views
5 votes
Integral of 1 /x+ sq.root x^2-1

1 Answer

5 votes

I'm assuming the integral is


\displaystyle \int (\mathrm dx)/(x+√(x^2-1))

Rationalize the denominator:


\frac1{x+√(x^2-1)} * (x-√(x^2-1))/(x-√(x^2-1)) = (x-√(x^2-1))/(x^2-\left(√(x^2-1)\right)^2) = x-√(x^2-1)

Then the integral is


\displaystyle \int\left(x-√(x^2-1)\right)\,\mathrm dx = \frac12x^2 - \int√(x^2-1)\,\mathrm dx

For the remaining integral, substitute x = sec(t ) and dx = sec(t ) tan(t ) dt. Then over an appropriate domain, we have


\displaystyle\int√(x^2-1)\,\mathrm dx = \int\sec(t)\tan(t)√(\sec^2(t)-1)\,\mathrm dt = \int\sec(t)\tan^2(t)\,\mathrm dt

Integrate by parts, taking

u = tan(t ) ==> du = sec²(t ) dt

dv = sec(t ) tan(t ) dt ==> v = sec(t )

Then


\displaystyle\int\sec(t)\tan^2(t)\,\mathrm dt = \sec(t)\tan(t) - \int\sec^3(t)\,\mathrm dt

Now for *this* remaining integral, integrate by parts again, taking

u = sec(t ) ==> du = sec(t ) tan(t ) dt

dv = sec²(t ) dt ==> v = tan(t )

so that


\displaystyle\int\sec^3(t)\,\mathrm dt = \sec(t)\tan(t) - \int\sec(t)\tan^2(t)\,\mathrm dt \\\\ \int\sec^3(t)\,\mathrm dt = \sec(t)\tan(t) - \int\sec(t)(\sec^2(t)-1)\,\mathrm dt \\\\ \int\sec^3(t)\,\mathrm dt = \sec(t)\tan(t) - \int\sec^3(t)\,\mathrm dt + \int\sec(t)\,\mathrm dt \\\\ \int\sec^3(t)\,\mathrm dt = \frac12\sec(t)\tan(t)+\frac12\int\sec(t)\,\mathrm dt \\\\ \int\sec^3(t)\,\mathrm dt = \frac12\sec(t)\tan(t) + \frac12\ln\left|\sec(t)+\tan(t)\right| + C

To summarize, if I denotes the original integral, we have


\displaystyle I = \frac12x^2 - \int√(x^2-1)\,\mathrm dx \\\\ I = \frac12x^2 - \int\sec(t)\tan^2(t)\,\mathrm dt \\\\ I = \frac12x^2 - \sec(t)\tan(t) + \int\sec^3(t)\,\mathrm dt \\\\ I = \frac12x^2 - \sec(t)\tan(t) + \frac12\sec(t)\tan(t) + \frac12\ln\left|\sec(t)+\tan(t)\right| + C \\\\ I = \frac12x^2 - \frac12\sec(t)\tan(t) + \frac12\ln\left|\sec(t)+\tan(t)\right| + C

Putting everything back in terms of x, we have

sec(t ) = x

tan(t ) = √(x ² - 1)

so that


\displaystyle I = \boxed+C

User Jordi Bunster
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories