Answer:
Their final relative velocity is 0.190 m/s
Step-by-step explanation:
The relative velocity of the satellites, v = 0.190 m/s
The mass of the first satellite, m₁ = 4.00 × 10³ kg
The mass of the second satellite, m₂ = 7.50 × 10³ kg
Given that the satellites have elastic collision, we have;
![v_2 = (2 \cdot m_1)/(m_1 + m_2) \cdot u_1 - (m_1 - m_2)/(m_1 + m_2) \cdot u_2](https://img.qammunity.org/2022/formulas/physics/high-school/xsk8nqjzqojfj8umctcpeodot402orujg6.png)
![v_2 = ( m_1 - m_2)/(m_1 + m_2) \cdot u_1 + (2 \cdot m_2)/(m_1 + m_2) \cdot u_2](https://img.qammunity.org/2022/formulas/physics/high-school/kiliq17e1dejdshlzkv0otyf80yl0j8pza.png)
Given that the initial velocities are equal in magnitude, we have;
u₁ = u₂ = v/2
u₁ = u₂ = 0.190 m/s/2 = 0.095 m/s
v₁ and v₂ = The final velocities of the satellites
We get;
![v_1 = (2 * 4.0 * 10^3)/(4.0 * 10^3 + 7.50 * 10^3) * 0.095 - (4.0 * 10^3- 7.50* 10^3)/(4.0 * 10^3+ 7.50* 10^3) * 0.095 = 0.095](https://img.qammunity.org/2022/formulas/physics/high-school/8yesql54lf0lvg6t2esromgzbidc6xl4ws.png)
![v_2 = ( 4.0 * 10^3 - 7.50* 10^3)/(4.0 * 10^3 + 7.50 * 10^3) * 0.095 + (2 * 7.50* 10^3)/(4.0 * 10^3+ 7.50* 10^3) * 0.095 = 0.095](https://img.qammunity.org/2022/formulas/physics/high-school/pt96m2v7h431g7qfjh8gahp6m8y500jcnz.png)
The final relative velocity of the satellite,
= v₁ + v₂
∴
= 0.095 + 0.095 = 0.190
The final relative velocity of the satellite,
= 0.190 m/s