27.5k views
4 votes
Differentiate the x the function :
(3x² - 9x +5²)



1 Answer

3 votes

Firstly , before solving the equation , we should know about the chain rule and its formula.

Formula For the Chain rule-

$\rightarrow$ $\sf\dfrac\pink{dy}\pink{dx}$=$\sf\dfrac\pink{dy}\pink{du}$ $\times$ $\sf\dfrac\pink{du}\pink{dx}$ $\leftarrow$

_____________________________

$\sf\huge\underline{\underline{Question:}}$

$\sf\small{Differentiate\: x\: the \:function: (3x² - 9x + 5²)}$

$\sf\huge\underline{\underline{Solution:}}$

$\sf{Let\:y = (3x^2 - 9x + 5)^9}$

$\space$

☆ Differentiating both the sides w.r.t.x using chain rule-

$\mapsto$
\sf(dy)/(dx)=
\sf(d)/(dx)
\sf{(3x^2 - 9x + 5)^9}

$\space$

$\space$

$\mapsto$
\sf(dy)/(dx)=
\sf{9(3x^2-9x+5)^8}
*
\sf(d)/(dx)$\sf\small{(3x^2-9+5)}$

$\space$

$\space$

$\mapsto$
\sf(dy)/(dx)=
\sf{9(3x^2-9x+5)^8}
*
\sf(6x-9)

$\space$

$\space$

$\mapsto$
\sf(dy)/(dx)=
\sf{9(3x^2-9x+5)^8} $\times$
\sf{3(2x-3)}

$\space$

$\space$

$\mapsto$
\sf(dy)/(dx)=
\sf{27(3x^2-9x+5)^8(2x-3)}

$\space$

$\space$

$\sf\underline\bold\green{❍ dy:dx=27(3x^2-9x+5)^8(2x-3)}$

______________________________

User Dkozl
by
4.2k points