Answer:
![E = 0.0158](https://img.qammunity.org/2022/formulas/mathematics/college/ow1xfl8ddlo33ms3pxcoesbmpsas7brd8b.png)
Explanation:
Given
![n = 5900](https://img.qammunity.org/2022/formulas/mathematics/college/gh1xhec0urcsjw5dfqxvjxktcjexlw3pbv.png)
![x = 1770](https://img.qammunity.org/2022/formulas/mathematics/college/f2zj3jkwtokevzvxeby26iygrvvoe2awo5.png)
![CI = 99\%](https://img.qammunity.org/2022/formulas/mathematics/college/payw4xhdkn2ms866fgkwjrbtueqjd2ygtk.png)
Required
The margin of error (E)
First, calculate proportion p
![p = x/n](https://img.qammunity.org/2022/formulas/mathematics/college/ckfezmvj8dk2octyyv0tsydp5oxekafnmj.png)
![p = 1770/5900](https://img.qammunity.org/2022/formulas/mathematics/college/gzpmexbnzmpw5tb367n1w610np7wt91luj.png)
![p = 0.3](https://img.qammunity.org/2022/formulas/sat/college/3rlffgrelqprbzk47b3ut3ido6tz5fx19w.png)
Given that:
![CI = 99\%](https://img.qammunity.org/2022/formulas/mathematics/college/payw4xhdkn2ms866fgkwjrbtueqjd2ygtk.png)
Calculate the alpha leve;
![\alpha = 1 - CI](https://img.qammunity.org/2022/formulas/mathematics/high-school/iwb9t34psis2f2gmnt2ato13f6s85i4fv3.png)
![\alpha = 1- 0.99](https://img.qammunity.org/2022/formulas/mathematics/college/pcr1i78h4q6jmk99uqu7bqul39duihdd8o.png)
![\alpha= 0.01](https://img.qammunity.org/2022/formulas/mathematics/college/x8dy9r8u27am0csuoy23npqgiffuk9h1ep.png)
Divide by 2
![\alpha/2= 0.01/2](https://img.qammunity.org/2022/formulas/mathematics/college/4sjo0366if7iwtycbcunb2uknrs5ipfnhi.png)
Subtract from 1
![1 - \alpha/2= 1 - 0.01/2](https://img.qammunity.org/2022/formulas/mathematics/college/ferqzsi26l1clg581wbprn6n5wqb9wdj1x.png)
The corresponding z value is:
![z =2.576](https://img.qammunity.org/2022/formulas/mathematics/college/tvsrl4wrzst78aodehi7fzzi0cduucd26j.png)
So, the margin of error is:
![E = z * √(p * (1 - p)/n)](https://img.qammunity.org/2022/formulas/mathematics/college/wvn39asuo1wh6qmh05xnev8w3t8kyyezxm.png)
So, we have:
![E = 2.576 * √(0.3 * (1 - 0.3)/5600)](https://img.qammunity.org/2022/formulas/mathematics/college/dds8brcmpp0kau1yq46z0bfgiaodh366ow.png)
Using a calculator, we have:
![E = 0.01577471394](https://img.qammunity.org/2022/formulas/mathematics/college/5yn12davofvj52r30dssf194al38jnxw0k.png)
Approximate
![E = 0.0158](https://img.qammunity.org/2022/formulas/mathematics/college/ow1xfl8ddlo33ms3pxcoesbmpsas7brd8b.png)