Answer:
The first three terms in the geometric sequence are 18, 24, 32.
Explanation:
A number when added to
that yields consecutive terms of a geometric sequence is an unknown number
![t\in \mathbb{Z}](https://img.qammunity.org/2022/formulas/mathematics/college/xf3g6y4mki2g63e42rplj4s83g2rhp9tc3.png)
Given
![x = 1, y = 7, z = 15](https://img.qammunity.org/2022/formulas/mathematics/college/ag32jlhvrmuhei9homg5eu9ot8ilqnnyul.png)
We know
![\alpha _1 = 1+t](https://img.qammunity.org/2022/formulas/mathematics/college/1rrumilm3jizot5thun8lvircjoeiyhefa.png)
![\alpha _2 = 7+t](https://img.qammunity.org/2022/formulas/mathematics/college/o6er2c1xyzuhlb7bii625q8q6tq636fzto.png)
![\alpha _3 = 15+t](https://img.qammunity.org/2022/formulas/mathematics/college/qv3ybx839ol3wnnid53ml3gq580t3bg89w.png)
Recall that a geometric sequence is in the form
![\boxed{a_n = a_1 \cdot r^(n-1)}](https://img.qammunity.org/2022/formulas/mathematics/college/3uvjvriukou7febx08a44xm1r98xkyzwyo.png)
Therefore, once
are consecutive terms,
![15+t = (1+t) r^(3-1) \implies 15+t = (1+t) r^2](https://img.qammunity.org/2022/formulas/mathematics/college/zdl73z8pzgq05zof9hyr0bg5opo4v96xrg.png)
To find the ratio, for
![\dots a_(k-1), a_k, a_(k+1) \dots](https://img.qammunity.org/2022/formulas/mathematics/college/2c0u6z2p0vt4n1qk1lcefn5rrsymf7iiph.png)
we know
![(a_k)/(a_(k-1)) =(a_k)/(a_(k-1)) =r](https://img.qammunity.org/2022/formulas/mathematics/college/swc39znatqkrjanx23kbz9dbtbhev7j3wl.png)
Therefore,
![((7+t))/((1+t)) =((15+t))/((7+t)) \implies (7+t)^2 = (15+t)(1+t)](https://img.qammunity.org/2022/formulas/mathematics/college/2yi5ws01ve6m5qrxugqwi4nb7cr5oxr9ir.png)
![\implies 49+14t+t^2=15+16t+t^2 \implies -2t=-34 \implies t=17](https://img.qammunity.org/2022/formulas/mathematics/college/ggjirceb9duaxd4jl6uiywph710dhtnsdt.png)
The ratio is therefore
![r=(4)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/pgcc9hpj00vky6gshsuknvfgkz660g8m6m.png)
Therefore, the first three terms in the geometric sequence are 18, 24, 32.