162k views
5 votes
Plzzzzz help me............​

Plzzzzz help me............​-example-1
User Wonbyte
by
8.5k points

1 Answer

3 votes

Solution

Given :-

  • sec θ + tan θ = p _______(1)

Show that :-

  • (p² - 1)/(p² + 1) = sin θ

Step-by-step explanation

we Know,

sec² θ - tan² θ = 1

(a + b )² = + + 2ab

Then,

Take L.H.S.

= (p² - 1)/(p² + 1)

keep value of p .

= {(sec θ + tan θ)² - 1}/{(sec θ + tan θ)² + 1}

= {(sec² θ + tan² θ + 2sec θ . tan θ) - 1 }/{(sec² θ + tan² θ + 2sec θ . tan θ) + 1}

= ( sec² θ - 1) + ( tan² θ + 2 sec θ . tan θ )}\{(tan² θ + 1) + ( sec ² θ + 2 sec θ . tan θ )

= { tan² θ + tan² θ + 2 sec θ . tan θ }/{(sec² θ + sec²θ + 2sec θ . tan θ]

= (2 tan ² θ + 2 sec θ . tan θ)/(2 sec ² θ + 2 sec θ . tan θ)

= {2tan θ( tan θ + sec θ)}/{2sec θ(sec θ + tan θ) }

= 2 tan θ /2 sec θ

= tan θ/sec θ

= (sin θ/cos θ)/(1/cos θ)

= sin θ

R.H.S.

That's proved .

________________

User Attila Antal
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories