44.2k views
4 votes
Find the
Prove that sin theta tan theta= (1 + sec theta)(1 - cos theta)


User Lisle
by
7.5k points

2 Answers

4 votes
Sin tita tan tita = LHS
User Daniel Kaplan
by
8.2k points
7 votes

Answer:

Explanation:

RHS = (1 +Sec Ф)(1 - Cos Ф)

= 1*1 - 1*Cos Ф + Sec Ф *1 - Sec Ф *Cos Ф

= 1 - Cos Ф + Sec Ф - 1 {Sec Ф =
(1)/(Cos \ theta) )

=Sec Ф - Cos Ф

=
(1)/(Cos \ theta) - Cos Ф


= (1)/(Cos \ theta)-(Cos \ theta*Cos \ theta)/(Cos \ theta)\\\\= (1-Cos^(2) \ theta)/(Cos \ theta)\\\\= (Sin^(2) \ theta)/(Cos \ theta)\\\\=(Sin \ theta*Sin \ theta)/(Cos \ theta)\\\\= Sin \ theta*(Sin \ theta)/(Cos \ theta)

= Sin Ф* tan Ф = LHS

User Ken Mason
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories